tf.graph().as_default()
时间: 2023-04-26 07:03:06 浏览: 122
tf.graph().as_default()是TensorFlow中的一个函数,用于创建一个默认的计算图。在TensorFlow中,计算图是一个抽象的概念,它描述了TensorFlow中的计算过程。通过使用tf.graph().as_default()函数,我们可以将当前的计算图设置为默认的计算图,这样在后续的操作中,就可以直接使用默认的计算图进行计算。这个函数通常用于在TensorFlow中创建多个计算图的场景中。
相关问题
with tf.Graph().as_default(), tf.compat.v1.Session().as_default() as sess: var_list = tf.train.list_variables(ckpt_path) new_var_list = [] for var_name, shape in var_list: # print(var_name) if var_name in except_list: continue
这段代码与上面那段代码一起使用,它的作用是过滤掉不需要的变量。具体来说,它遍历了 var_list 中的所有变量,判断变量名是否在 except_list 中,如果在,则跳过这个变量,否则将这个变量名和形状添加到 new_var_list 中。其中,except_list 是一个不需要的变量列表。这段代码的作用是从训练模型中筛选出需要的变量列表,并将它们存储在 new_var_list 中。
import time import tensorflow.compat.v1 as tf tf.disable_v2_behavior() from tensorflow.examples.tutorials.mnist import input_data import mnist_inference import mnist_train tf.compat.v1.reset_default_graph() EVAL_INTERVAL_SECS = 10 def evaluate(mnist): with tf.Graph().as_default() as g: #定义输入与输出的格式 x = tf.compat.v1.placeholder(tf.float32, [None, mnist_inference.INPUT_NODE], name='x-input') y_ = tf.compat.v1.placeholder(tf.float32, [None, mnist_inference.OUTPUT_NODE], name='y-input') validate_feed = {x: mnist.validation.images, y_: mnist.validation.labels} #直接调用封装好的函数来计算前向传播的结果 y = mnist_inference.inference(x, None) #计算正确率 correcgt_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correcgt_prediction, tf.float32)) #通过变量重命名的方式加载模型 variable_averages = tf.train.ExponentialMovingAverage(0.99) variable_to_restore = variable_averages.variables_to_restore() saver = tf.train.Saver(variable_to_restore) #每隔10秒调用一次计算正确率的过程以检测训练过程中正确率的变化 while True: with tf.compat.v1.Session() as sess: ckpt = tf.train.get_checkpoint_state(minist_train.MODEL_SAVE_PATH) if ckpt and ckpt.model_checkpoint_path: #load the model saver.restore(sess, ckpt.model_checkpoint_path) global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1] accuracy_score = sess.run(accuracy, feed_dict=validate_feed) print("After %s training steps, validation accuracy = %g" % (global_step, accuracy_score)) else: print('No checkpoint file found') return time.sleep(EVAL_INTERVAL_SECS) def main(argv=None): mnist = input_data.read_data_sets(r"D:\Anaconda123\Lib\site-packages\tensorboard\mnist", one_hot=True) evaluate(mnist) if __name__ == '__main__': tf.compat.v1.app.run()对代码进行改进
以下是对代码的改进建议:
1. 在代码开头添加注释,简要说明代码功能和使用方法。
2. 将导入模块的语句放在代码开头。
3. 将模型保存路径和评估时间间隔定义为常量,并使用有意义的变量名。
4. 将计算正确率和加载模型的过程封装为函数。
5. 在主函数中调用评估函数。
改进后的代码如下:
```
# 该代码实现了使用已训练好的模型对 MNIST 数据集进行评估
import time
import tensorflow.compat.v1 as tf
from tensorflow.examples.tutorials.mnist import input_data
import mnist_inference
import mnist_train
# 定义常量
MODEL_SAVE_PATH = 'model/'
EVAL_INTERVAL_SECS = 10
def evaluate(mnist):
"""
计算模型在验证集上的正确率
"""
with tf.Graph().as_default() as g:
# 定义输入和输出格式
x = tf.placeholder(tf.float32, [None, mnist_inference.INPUT_NODE], name='x-input')
y_ = tf.placeholder(tf.float32, [None, mnist_inference.OUTPUT_NODE], name='y-input')
# 直接调用封装好的函数计算前向传播结果
y = mnist_inference.inference(x, None)
# 计算正确率
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
# 加载模型
variable_averages = tf.train.ExponentialMovingAverage(mnist_train.MOVING_AVERAGE_DECAY)
variables_to_restore = variable_averages.variables_to_restore()
saver = tf.train.Saver(variables_to_restore)
# 在验证集上计算正确率
with tf.Session() as sess:
ckpt = tf.train.get_checkpoint_state(MODEL_SAVE_PATH)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
accuracy_score = sess.run(accuracy, feed_dict={x: mnist.validation.images, y_: mnist.validation.labels})
print("After %s training steps, validation accuracy = %g" % (global_step, accuracy_score))
else:
print('No checkpoint file found')
def main(argv=None):
# 读取数据集
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
# 每隔一定时间评估模型在验证集上的正确率
while True:
evaluate(mnist)
time.sleep(EVAL_INTERVAL_SECS)
if __name__ == '__main__':
tf.app.run()
```
阅读全文