centos8 xfs 扩容命令

时间: 2023-09-04 17:16:31 浏览: 51
在 CentOS 8 中,可以使用以下命令扩展 XFS 文件系统: 1. 首先使用 `lsblk` 命令查看当前磁盘分区情况,找到需要扩展的磁盘分区: ``` lsblk ``` 2. 使用 `fdisk` 命令编辑磁盘分区: ``` sudo fdisk /dev/sda ``` 注意:这里的 `/dev/sda` 是你需要扩展的磁盘分区。 进入 fdisk 后,输入以下命令: ``` p // 查看分区情况 d // 删除原分区 n // 新建分区 p // 选择分区类型为主分区 1 // 分区编号为 1 [ENTER] // 默认起始扇区 [ENTER] // 默认结束扇区 w // 保存并退出 ``` 注意:以上命令会删除原有分区,新建一个与原有分区大小相同的分区。如果需要扩大分区大小,请将结束扇区设置为新的值。 3. 重新读取分区表: ``` sudo partprobe /dev/sda ``` 4. 使用 `xfs_growfs` 命令扩展文件系统: ``` sudo xfs_growfs /dev/sda1 ``` 注意:以上命令中的 `/dev/sda1` 是你需要扩展的文件系统所在的分区。 5. 使用 `df -h` 命令查看文件系统大小是否已经扩展。 ``` df -h ```
相关问题

centos根目录扩容

要扩容CentOS根目录,你可以按照以下步骤进行操作: 1. 首先,备份你的重要数据。在进行分区扩容前,确保你的数据已经备份,以防万一出现意外情况。 2. 确定可用的空闲空间。可以使用命令 `df -h` 查看当前磁盘空间使用情况,并找到可供扩容的分区。 3. 扩展分区。如果你的根目录位于单独的分区,可以使用分区管理工具(如GParted)来调整分区大小。如果根目录与其他目录位于同一个分区,你需要扩展整个分区以增加根目录的空间。 4. 调整文件系统大小。如果你已经扩展了分区,需要使用文件系统特定的工具来调整文件系统大小。例如,如果你使用的是ext4文件系统,可以使用 `resize2fs` 命令来调整大小。如果是XFS文件系统,可以使用 `xfs_growfs` 命令。 请注意,在进行这些操作之前,建议在虚拟机中进行测试,确保你有正确的备份,并且理解操作的风险。如果你对这些操作不熟悉或不确定,建议寻求专业人士的帮助。

centos卷组扩容

要扩大CentOS卷组的大小,可以按照以下步骤进行操作: 1. 首先,使用`lvresize`命令来增加卷组的大小。命令格式为`lvresize -L <增加的大小> /dev/mapper/centos-root`。例如,如果要增加100G的大小,可以运行`lvresize -L 100G /dev/mapper/centos-root`。 2. 接下来,需要重新识别CentOS的大小。使用`xfs_growfs`命令来重新识别文件系统的大小。命令格式为`xfs_growfs /dev/mapper/centos-root`。 请注意,上述命令中的`/dev/mapper/centos-root`表示CentOS系统根文件系统所在的逻辑卷。在LVM逻辑卷管理中,根文件系统是建立在卷组(VG)centos上的逻辑卷(LV)上,逻辑卷的名称是root。因此,请确保不要将其随意更改为`centos-root`或其他名称。 通过执行以上步骤,您可以成功扩大CentOS卷组的大小。

相关推荐

最新推荐

recommend-type

[原创]CentOS6.9数据库生产服务器扩容手册(LVM+非LVM)

基于CentOS6.9数据库服务器 磁盘扩容/目录扩容,支持虚拟卷 LVM 及 普通 非LVM目录或磁盘的扩容,实战文档,
recommend-type

Centos 8 更改网卡MAC地址方法.docx

因工作原因需要修改MAC地址,发现网上关于CENTOS8的资源非常少,个人亲测,Centos 8 更改网卡MAC地址方法
recommend-type

CentOS8中的nmcli使用详解

主要介绍了CentOS8的nmcli使用,基于RHEL8/CentOS8的nmcli常见命令使用,非常不错,具有一定的参考借鉴价值,需要的朋友可以参考下
recommend-type

Linux LVM进行分区扩容

CentOS 7.0 LVM进行分区扩容,系统根目录空间不足时,可以通过LVM扩容来解决,这是超详细的资料可供参考
recommend-type

CentOS8 yum/dnf 配置国内源的方法

主要介绍了CentOS8 yum/dnf 配置国内源的方法,需要的朋友可以参考下
recommend-type

架构师技术分享 支付宝高可用系统架构 共46页.pptx

支付宝高可用系统架构 支付宝高可用系统架构是支付宝核心支付平台的架构设计和系统升级的结果,旨在提供高可用、可伸缩、高性能的支付服务。该架构解决方案基于互联网与云计算技术,涵盖基础资源伸缩性、组件扩展性、系统平台稳定性、可伸缩、高可用的分布式事务处理与服务计算能力、弹性资源分配与访问管控、海量数据处理与计算能力、“适时”的数据处理与流转能力等多个方面。 1. 可伸缩、高可用的分布式事务处理与服务计算能力 支付宝系统架构设计了分布式事务处理与服务计算能力,能够处理高并发交易请求,确保系统的高可用性和高性能。该能力基于互联网与云计算技术,能够弹性地扩展计算资源,满足业务的快速增长需求。 2. 弹性资源分配与访问管控 支付宝系统架构设计了弹性资源分配与访问管控机制,能够根据业务需求动态地分配计算资源,确保系统的高可用性和高性能。该机制还能够提供强大的访问管控功能,保护系统的安全和稳定性。 3. 海量数据处理与计算能力 支付宝系统架构设计了海量数据处理与计算能力,能够处理大量的数据请求,确保系统的高性能和高可用性。该能力基于互联网与云计算技术,能够弹性地扩展计算资源,满足业务的快速增长需求。 4. “适时”的数据处理与流转能力 支付宝系统架构设计了“适时”的数据处理与流转能力,能够实时地处理大量的数据请求,确保系统的高性能和高可用性。该能力基于互联网与云计算技术,能够弹性地扩展计算资源,满足业务的快速增长需求。 5. 安全、易用的开放支付应用开发平台 支付宝系统架构设计了安全、易用的开放支付应用开发平台,能够提供强大的支付应用开发能力,满足业务的快速增长需求。该平台基于互联网与云计算技术,能够弹性地扩展计算资源,确保系统的高可用性和高性能。 6. 架构设计理念 支付宝系统架构设计基于以下几点理念: * 可伸缩性:系统能够根据业务需求弹性地扩展计算资源,满足业务的快速增长需求。 * 高可用性:系统能够提供高可用性的支付服务,确保业务的连续性和稳定性。 * 弹性资源分配:系统能够根据业务需求动态地分配计算资源,确保系统的高可用性和高性能。 * 安全性:系统能够提供强大的安全功能,保护系统的安全和稳定性。 7. 系统架构设计 支付宝系统架构设计了核心数据库集群、应用系统集群、IDC数据库交易系统账户系统V1LB、交易数据库账户数据库业务一致性等多个组件。这些组件能够提供高可用性的支付服务,确保业务的连续性和稳定性。 8. 业务活动管理器 支付宝系统架构设计了业务活动管理器,能够控制业务活动的一致性,确保业务的连续性和稳定性。该管理器能够登记业务活动中的操作,并在业务活动提交时确认所有的TCC型操作的confirm操作,在业务活动取消时调用所有TCC型操作的cancel操作。 9. 系统故障容忍度高 支付宝系统架构设计了高可用性的系统故障容忍度,能够在系统故障时快速恢复,确保业务的连续性和稳定性。该系统能够提供强大的故障容忍度,确保系统的安全和稳定性。 10. 系统性能指标 支付宝系统架构设计的性能指标包括: * 系统可用率:99.992% * 交易处理能力:1.5万/秒 * 支付处理能力:8000/秒(支付宝账户)、2400/秒(银行) * 系统处理能力:处理每天1.5亿+支付处理能力 支付宝高可用系统架构设计了一个高可用、高性能、可伸缩的支付系统,能够满足业务的快速增长需求,确保业务的连续性和稳定性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Matlab画图线型实战:3步绘制复杂多维线型,提升数据可视化效果

![Matlab画图线型实战:3步绘制复杂多维线型,提升数据可视化效果](https://file.51pptmoban.com/d/file/2018/10/25/7af02d99ef5aa8531366d5df41bec284.jpg) # 1. Matlab画图基础 Matlab是一款强大的科学计算和数据可视化软件,它提供了一系列用于创建和自定义图形的函数。本章将介绍Matlab画图的基础知识,包括创建画布、绘制线型以及设置基本属性。 ### 1.1 创建画布 在Matlab中创建画布可以使用`figure`函数。该函数创建一个新的图形窗口,并返回一个图形句柄。图形句柄用于对图形进
recommend-type

基于R软件一个实际例子,实现空间回归模型以及包括检验和模型选择(数据集不要加州的,附代码和详细步骤,以及数据)

本文将使用R软件和Boston房价数据集来实现空间回归模型,并进行检验和模型选择。 数据集介绍: Boston房价数据集是一个观测500个社区的房屋价格和其他16个变量的数据集。每个社区的数据包含了包括犯罪率、房产税率、学生-老师比例等特征,以及该社区的房价中位数。该数据集可用于探索房价与其他变量之间的关系,以及预测一个新社区的房价中位数。 数据集下载链接:https://archive.ics.uci.edu/ml/datasets/Housing 1. 导入数据集和必要的包 ```r library(spdep) # 空间依赖性包 library(ggplot2) # 可
recommend-type

WM9713 数据手册

WM9713 数据手册 WM9713 是一款高度集成的输入/输出设备,旨在为移动计算和通信应用提供支持。下面是 WM9713 的详细知识点: 1. 设备架构:WM9713 采用双 CODEC 运算架构,支持 Hi-Fi 立体声编解码功能通过 AC 链接口,同时还支持语音编解码功能通过 PCM 类型的同步串行端口(SSP)。 2. 音频功能:WM9713 提供了一个第三个 AUX DAC,可以用于生成监督音、铃声等不同采样率的音频信号,独立于主编解码器。 3. 触摸面板接口:WM9713 可以直接连接到 4 线或 5 线触摸面板,减少系统中的总组件数量。 4. 音频连接:WM9713 支持多种音频连接方式,包括立体声麦克风、立体声耳机和立体声扬声器。且可以使用无电容连接到耳机、扬声器和耳机,减少成本和 PCB 面积。 5. 模拟输入/输出:WM9713 提供了多个模拟输入和输出引脚,用于无缝集成与模拟连接的无线通信设备。 6. 设备控制:所有设备功能都可以通过寄存器访问来控制,实现了灵活的设备管理和配置。 7. 功率管理:WM9713 采用低功率设计,降低系统的功率消耗,提高系统的可靠性和续航能力。 8. 工业应用:WM9713 广泛应用于移动计算、通信、消费电子等领域,满足不同行业的需求和应用场景。 9. 技术参数:WM9713 的技术参数包括工作温度、供电电压、时钟频率、数据传输速率等,满足不同应用场景的需求。 10. 应用场景:WM9713 可以应用于智能手机、平板电脑、笔记本电脑、智能家居设备等移动计算和通信产品,满足不同行业的需求和应用场景。 WM9713 是一款功能强大、灵活性高的输入/输出设备,广泛应用于移动计算和通信领域,为不同行业的应用场景提供了可靠的解决方案。