ValueError: optimizer got an empty parameter list
时间: 2023-06-26 22:06:09 浏览: 97
这个错误通常是由于没有任何参数传递给优化器导致的。确保你的模型有可训练的参数,并且你已经将它们传递给了优化器。你可以使用`model.parameters()`函数来获取模型的所有可训练参数,然后将它们传递给优化器。例如:
```
import torch.optim as optim
model = MyModel()
optimizer = optim.Adam(model.parameters(), lr=0.001)
```
如果你已经传递了可训练参数但仍然出现此错误,请检查你的模型是否正确地实现了`nn.Module`类。
相关问题
当出现ValueError: optimizer got an empty parameter list。需要改哪些地方的参数呢
当出现"ValueError: optimizer got an empty parameter list"错误时,意味着你尝试将一个空的参数列表传递给了优化器。这通常是因为模型中没有可训练的参数(例如所有参数都被冻结或没有定义模型的权重)。
要解决这个问题,你可以检查以下几个方面:
1. 确保你正在传递可训练的参数给优化器。在PyTorch中,可以通过`model.parameters()`方法获取模型的可训练参数列表。
2. 确保模型的权重已正确定义并加载。例如,如果是使用预训练模型,确保预训练权重已成功加载到模型中。
3. 检查模型的前向传播方法是否正确定义。确保在模型的`forward`方法中有有效的参数传递。
如果你仍然无法解决问题,请提供更多的代码和错误信息,以便我能够更好地帮助你。
ValueError Traceback (most recent call last) Cell In[10], line 30 27 net = Net() 29 criterion = nn.CrossEntropyLoss() ---> 30 optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) 32 folder_path = 'random_matrices2' 34 # 创建空的tensor File C:\ProgramData\anaconda3\lib\site-packages\torch\optim\sgd.py:105, in SGD.__init__(self, params, lr, momentum, dampening, weight_decay, nesterov, maximize, foreach) 103 if nesterov and (momentum <= 0 or dampening != 0): 104 raise ValueError("Nesterov momentum requires a momentum and zero dampening") --> 105 super(SGD, self).__init__(params, defaults) File C:\ProgramData\anaconda3\lib\site-packages\torch\optim\optimizer.py:49, in Optimizer.__init__(self, params, defaults) 47 param_groups = list(params) 48 if len(param_groups) == 0: ---> 49 raise ValueError("optimizer got an empty parameter list") 50 if not isinstance(param_groups[0], dict): 51 param_groups = [{'params': param_groups}] ValueError: optimizer got an empty parameter list
这个错误可能是因为你没有给优化器提供要优化的参数。请检查一下你的 `net` 模型是否已经被正确地定义并且已经被传递给了优化器。另外,你也可以在创建 `Net` 类的时候,确保你的模型有可训练的参数,例如:
```python
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
```
如果你还是无法解决问题,请提供更多的代码细节和上下文。
阅读全文