qspi和spi接口的区别
时间: 2023-05-12 07:03:16 浏览: 675
QSPI和SPI接口的区别在于数据传输速度和数据传输模式。SPI接口是一种串行同步通信协议,它使用四根线(MISO、MOSI、SCLK和SS)进行通信,数据传输速度较慢。而QSPI接口是一种高速串行通信协议,它使用四根线(IO0、IO1、IO2和IO3)进行通信,数据传输速度更快。此外,QSPI接口支持多线程操作,可以同时进行读写操作,而SPI接口只能进行单线程操作。
相关问题
QSPI和SPI的区别
QSPI (Quad-SPI) 和 SPI (Serial Peripheral Interface) 都是串行通信接口,但它们在设计目的、速度和功能上有一些关键区别:
1. **数据传输速率**:
- QSPI 提供了更高的数据传输速率,通常比传统的 SPI 快得多,这得益于它的四线或多线模式,允许同时传输多个数据线,提高了并行传输能力。
- SPI 是单线或多线模式,取决于具体实现,一般情况下速度相对较慢。
2. **接口复杂度**:
- QSPI 具备内置的闪存控制器,支持自动寻址、块操作等高级功能,对于连接外部高速闪存芯片更为便捷。
- SPI 则更加通用,可能需要额外的硬件逻辑来实现复杂的闪存控制。
3. **用途**:
- QSPI 主要用于连接外部高速存储器(如Nor Flash或eMMC),尤其在物联网设备、移动设备和嵌入式系统中常见。
- SPI 可以连接多种类型的外设,包括数码管、触摸屏、传感器等,并非特指闪存。
4. **引脚数量**:
- QSPI 通常需要更多的引脚(例如四个时钟信号线、四个数据线)以支持高速和多线传输。
- SPI 一般只需要时钟(SCK)、数据输入/输出(MOSI/MISO)以及片选(CS)引脚。
qspi和spi的区别
QSPI和SPI都是串行通信接口,但是它们之间有以下几个区别:
1. 速度:QSPI的速度比SPI快得多,因为它可以使用四根数据线同时传输数据,而SPI只能使用一根数据线。
2. 性能:QSPI的性能比SPI更好,因为它可以使用DMA(直接内存访问)来传输数据,而SPI则不能。
3. 灵活性:SPI比QSPI更灵活,为它可以使用不同的时钟极性和相位来配置通信,而QSPI则不能。
4. 硬件要求:QSPI需要更多的硬件支持,例如更多的数据线和更大的存储器,而SPI则不需要。
以下是一个使用STM32CubeMX和HAL库在STM32上实现QSPI的示例代码:
```c
#include "main.h"
#include "stm32f7xx_hal.h"
QSPI_HandleTypeDef hqspi;
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_QUADSPI_Init(void);
int main(void)
{
HAL_Init();
SystemClock_Config();
MX_GPIO_Init();
MX_QUADSPI_Init();
uint8_t tx_data[] = {0x9F, 0x00, 0x00, 0x00};
uint8_t rx_data[4];
HAL_QSPI_Command(&hqspi, &(QSPI_CommandTypeDef){.Instruction = 0x9F, .InstructionMode = QSPI_INSTRUCTION_1_LINE, .AddressMode = QSPI_ADDRESS_NONE, .DataMode = QSPI_DATA_1_LINE, .DummyCycles = 0, .NbData = 4, .DdrMode = QSPI_DDR_MODE_DISABLE, .DdrHoldHalfCycle = QSPI_DDR_HHC_ANALOG_DELAY, .SIOOMode = QSPI_SIOO_INST_EVERY_CMD}, HAL_MAX_DELAY);
HAL_QSPI_Receive(&hqspi, rx_data, HAL_MAX_DELAY);
while (1);
}
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 25;
RCC_OscInitStruct.PLL.PLLN = 432;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 9;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_7) != HAL_OK)
{
Error_Handler();
}
}
static void MX_QUADSPI_Init(void)
{
hqspi.Instance = QUADSPI;
hqspi.Init.ClockPrescaler = 1;
hqspi.Init.FifoThreshold = 4;
hqspi.Init.SampleShifting = QSPI_SAMPLE_SHIFTING_NONE;
hqspi.Init.FlashSize = POSITION_VAL(0x8000000) - 1;
hqspi.Init.ChipSelectHighTime = QSPI_CS_HIGH_TIME_2_CYCLE;
hqspi.Init.ClockMode = QSPI_CLOCK_MODE_0;
hqspi.Init.FlashID = QSPI_FLASH_ID_1;
hqspi.Init.DualFlash = QSPI_DUALFLASH_DISABLE;
if (HAL_QSPI_Init(&hqspi) != HAL_OK)
{
Error_Handler();
}
}
static void MX_GPIO_Init(void)
{
__HAL_RCC_GPIOB_CLK_ENABLE();
GPIO_InitTypeDef GPIO_InitStruct = {0};
GPIO_InitStruct.Pin = GPIO_PIN_2 | GPIO_PIN_6 | GPIO_PIN_7 | GPIO_PIN_8 | GPIO_PIN_9 | GPIO_PIN_10;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF10_QUADSPI;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
}
```
阅读全文