if cfg.deepsupervision: masks_preds = net(imgs) loss = 0 for masks_pred in masks_preds: tot_cross_entropy = 0 for true_mask, pred in zip(true_masks, masks_pred): pred = (pred > cfg.out_threshold).float() #二值化处理 if cfg.n_classes > 1: sub_cross_entropy = F.cross_entropy(pred.unsqueeze(dim=0), true_mask.unsqueeze(dim=0).squeeze(1)).item()#计算损失 else: sub_cross_entropy = dice_coeff(pred, true_mask.squeeze(dim=1)).item()#预测分割掩码和真实标签相似度,将两个结果转化为二值化的掩码,然后计算交集并集 tot_cross_entropy += sub_cross_entropy #计算总损失 tot_cross_entropy = tot_cross_entropy / len(masks_preds) #计算平均损失 tot += tot_cross_entropy #计算总平均损失 else: masks_pred = net(imgs) for true_mask, pred in zip(true_masks, masks_pred): pred = (pred > cfg.out_threshold).float() if cfg.n_classes > 1: tot += F.cross_entropy(pred.unsqueeze(dim=0), true_mask.unsqueeze(dim=0).squeeze(1)).item() else: tot += dice_coeff(pred, true_mask.squeeze(dim=1)).item() pbar.update(imgs.shape[0])
时间: 2024-02-14 20:36:13 浏览: 81
这段代码是语义分割任务中的损失计算部分,其中使用了深监督(Deep Supervision)的方法。在深监督中,一个模型通常会产生多个输出,每个输出都对应着不同的层或分支,在训练过程中,每个输出都会计算一次损失,并反向传播更新梯度。这个方法可以有效地加快模型的收敛速度,并提高模型的鲁棒性。
如果cfg.deepsupervision为True,表示使用深监督方法。代码首先使用网络net对输入图像imgs进行预测,得到多个预测掩码masks_pred。接下来,对于每一个预测掩码masks_pred,计算它与真实掩码true_masks之间的交叉熵损失或Dice系数损失,并将它们累加得到总的损失tot_cross_entropy。最后,将总的损失除以预测掩码的数量,得到平均损失tot_cross_entropy,并将它加到总平均损失tot中。
如果cfg.deepsupervision为False,表示不使用深监督方法。代码中仍然使用网络net对输入图像imgs进行预测,得到一个预测掩码masks_pred。接下来,计算它与真实掩码true_masks之间的交叉熵损失或Dice系数损失,并将它们累加得到总的损失tot。
最后,代码使用进度条pbar来显示训练的进度。其中pbar.update(imgs.shape[0])表示当前已经处理了多少张图片。
阅读全文