用遗传算法实现大学排课 c语言代码
时间: 2024-02-18 14:03:02 浏览: 119
以下是一份参考代码实现,但请注意,这只是一个简单的示例,实际应用中可能需要更复杂的实现和优化,因此仅供参考。
```c
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#define MAX_COURSES 100
#define MAX_TIMESLOTS 50
#define MAX_ROOMS 30
#define MAX_TEACHERS 20
#define MAX_STUDENTS 200
typedef struct {
int course_id;
int timeslot_id;
int teacher_id;
int room_id;
} Gene;
typedef struct {
Gene genes[MAX_COURSES];
int fitness;
} Chromosome;
typedef struct {
Chromosome chromosomes[MAX_STUDENTS];
int size;
} Population;
int course_conflicts[MAX_COURSES][MAX_COURSES];
int teacher_conflicts[MAX_TEACHERS][MAX_TEACHERS];
int student_conflicts[MAX_STUDENTS][MAX_STUDENTS];
int course_capacity[MAX_COURSES];
int room_capacity[MAX_ROOMS];
int course_teacher[MAX_COURSES];
int teacher_courses[MAX_TEACHERS][MAX_COURSES];
int student_courses[MAX_STUDENTS][MAX_COURSES];
int course_students[MAX_COURSES][MAX_STUDENTS];
int num_courses, num_timeslots, num_rooms, num_teachers, num_students;
int get_random(int min, int max) {
return min + rand() % (max - min + 1);
}
void randomize_population(Population *population) {
int i, j;
for (i = 0; i < population->size; i++) {
Chromosome *chromosome = &population->chromosomes[i];
for (j = 0; j < num_courses; j++) {
chromosome->genes[j].course_id = j;
chromosome->genes[j].timeslot_id = get_random(0, num_timeslots - 1);
chromosome->genes[j].teacher_id = course_teacher[j];
chromosome->genes[j].room_id = get_random(0, num_rooms - 1);
}
}
}
int calculate_fitness(Chromosome *chromosome) {
int i, j, conflicts = 0;
for (i = 0; i < num_courses; i++) {
Gene *gene1 = &chromosome->genes[i];
for (j = i + 1; j < num_courses; j++) {
Gene *gene2 = &chromosome->genes[j];
if (gene1->timeslot_id == gene2->timeslot_id &&
(gene1->room_id == gene2->room_id ||
course_conflicts[gene1->course_id][gene2->course_id] ||
teacher_conflicts[gene1->teacher_id][gene2->teacher_id] ||
student_conflicts[course_students[gene1->course_id][0]][course_students[gene2->course_id][0]])) {
conflicts++;
}
}
if (course_capacity[gene1->course_id] > room_capacity[gene1->room_id]) {
conflicts++;
}
}
return num_courses * num_courses - conflicts;
}
void evaluate_population(Population *population) {
int i;
for (i = 0; i < population->size; i++) {
Chromosome *chromosome = &population->chromosomes[i];
chromosome->fitness = calculate_fitness(chromosome);
}
}
void sort_population(Population *population) {
int i, j;
for (i = 0; i < population->size - 1; i++) {
for (j = 0; j < population->size - i - 1; j++) {
if (population->chromosomes[j].fitness < population->chromosomes[j + 1].fitness) {
Chromosome temp = population->chromosomes[j];
population->chromosomes[j] = population->chromosomes[j + 1];
population->chromosomes[j + 1] = temp;
}
}
}
}
int select_parent(int total_fitness, Population *population) {
int i, sum = 0;
for (i = 0; i < population->size; i++) {
sum += population->chromosomes[i].fitness;
if (sum >= total_fitness) {
return i;
}
}
return population->size - 1;
}
void crossover(Chromosome *parent1, Chromosome *parent2, Chromosome *child1, Chromosome *child2) {
int i, crossover_point = get_random(0, num_courses - 1);
for (i = 0; i < crossover_point; i++) {
child1->genes[i] = parent1->genes[i];
child2->genes[i] = parent2->genes[i];
}
for (i = crossover_point; i < num_courses; i++) {
child1->genes[i] = parent2->genes[i];
child2->genes[i] = parent1->genes[i];
}
}
void mutate(Chromosome *chromosome) {
int i, j;
for (i = 0; i < num_courses; i++) {
if (get_random(0, 100) < 5) {
chromosome->genes[i].timeslot_id = get_random(0, num_timeslots - 1);
}
if (get_random(0, 100) < 5) {
chromosome->genes[i].room_id = get_random(0, num_rooms - 1);
}
}
}
void generate_children(Population *population) {
int i, total_fitness = 0;
for (i = 0; i < population->size; i++) {
total_fitness += population->chromosomes[i].fitness;
}
for (i = 0; i < population->size; i += 2) {
int parent1_index = select_parent(total_fitness, population);
int parent2_index = select_parent(total_fitness, population);
Chromosome *parent1 = &population->chromosomes[parent1_index];
Chromosome *parent2 = &population->chromosomes[parent2_index];
Chromosome *child1 = &population->chromosomes[i];
Chromosome *child2 = &population->chromosomes[i + 1];
crossover(parent1, parent2, child1, child2);
mutate(child1);
mutate(child2);
}
}
void print_schedule(Chromosome *chromosome) {
int i, j;
printf("Course\tTime\tTeacher\tRoom\n");
for (i = 0; i < num_courses; i++) {
Gene *gene = &chromosome->genes[i];
printf("%d\t%d\t%d\t%d\n", gene->course_id, gene->timeslot_id, gene->teacher_id, gene->room_id);
}
}
int main() {
srand(time(NULL));
num_courses = 10;
num_timeslots = 5;
num_rooms = 3;
num_teachers = 4;
num_students = 20;
randomize_population(&population);
evaluate_population(&population);
sort_population(&population);
print_schedule(&population.chromosomes[0]);
return 0;
}
```
在实际应用中,需要根据具体需求进行调整和优化,并且需要根据实际数据来初始化相关参数和数据结构。
阅读全文