focal loss损失函数
时间: 2023-10-30 14:27:50 浏览: 92
focal loss
Focal Loss是一种针对不平衡数据的损失函数,它是由Facebook AI Research在2017年提出的。传统的交叉熵损失函数在处理不平衡数据时容易出现“类别失衡”的问题,即对于少数类别的样本,模型往往难以学习到有效的特征表示。Focal Loss通过对易分类的样本降低权重来缓解这一问题,使得模型更加关注难分类的样本。具体而言,Focal Loss通过引入一个可调节的超参数γ,对易分类的样本进行降权,使得模型更加关注难分类的样本。Focal Loss的数学表达式为:
FL(p_t) = -(1-p_t)^γlog(p_t)
其中,p_t表示模型对样本的预测概率,γ为可调节的超参数。当γ=0时,Focal Loss等价于标准的交叉熵损失函数;当γ>0时,Focal Loss对易分类的样本进行降权,使得模型更加关注难分类的样本。Focal Loss在许多视觉任务中取得了优秀的表现,特别是在处理类别不平衡的情况下表现出色。
阅读全文