|sku_id| price| +------+-------+ |186976| 687.04| | act_date| act_time| user| act_type| sku| +----------+----------+-------+--------+------+------+ |2018-03-11|23:54:29.0| 267467| 2|186976| |2018-03-26|16:16:03.0| 709681| 2|327755| | act_date| act_time| user| act_type| sku| price| +----------+----------+-------+--------+------+------+ |2018-03-11|23:54:29.0| 267467| 2|186976|687.04| |2018-03-26|16:16:03.0| 709681| 2|327755|1588.5| 用spark程序实现以上需求,注意上面三个都是DataFrame
时间: 2023-07-19 15:21:29 浏览: 83
根据您提供的需求,我可以提供以下Spark程序实现:
```python
from pyspark.sql.functions import first
# 读取原始数据为DataFrame
df1 = spark.read.format("csv").option("header", "true").load("path/to/df1.csv")
df2 = spark.read.format("csv").option("header", "true").load("path/to/df2.csv")
df3 = spark.read.format("csv").option("header", "true").load("path/to/df3.csv")
# 合并df1和df2,以df1为基础
df_merge = df1.join(df2, on=["act_date", "act_time", "user", "act_type", "sku"], how="outer")
# 合并df_merge和df3,以df_merge为基础
df_result = df_merge.join(df3, on="sku", how="outer") \
.groupBy("sku") \
.agg(first("price").alias("price"))
# 打印结果
df_result.show()
```
上述代码中,我们首先使用`spark.read`方法将三个CSV文件读取为DataFrame。然后使用`join`方法合并df1和df2,以df1为基础,再将结果与df3合并,以df_merge为基础。最后使用`groupBy`和`agg`方法计算每个sku的唯一价格,并将结果存储在df_result中。最后使用`show`方法打印结果。
阅读全文