详细举一个声音特征提取的例子
时间: 2024-02-22 13:01:00 浏览: 84
一个常见的声音特征提取方法是MFCC(Mel Frequency Cepstral Coefficients,梅尔频率倒谱系数)。以下是一个用MATLAB实现MFCC特征提取的例子:
1. 读取音频文件
```
[y, fs] = audioread('sample.wav');
```
2. 分帧
```
frameLength = round(0.025*fs); % 帧长为25ms
hopLength = round(0.010*fs); % 帧移为10ms
frames = buffer(y, frameLength, frameLength-hopLength);
```
3. 加窗
```
window = hamming(frameLength);
frames = frames .* repmat(window, 1, size(frames,2));
```
4. 计算功率谱密度
```
NFFT = 2^nextpow2(frameLength);
psd = abs(fft(frames, NFFT)).^2 / frameLength;
```
5. 计算梅尔滤波器组
```
numFilters = 26;
mMin = 0;
mMax = 2595*log10(1+fs/2/700); % 根据人耳的特性,最高频率为7000Hz
m = linspace(mMin, mMax, numFilters+2); % 在梅尔域上均匀分布梅尔频率
f = 700*(10.^(m/2595)-1); % 将梅尔频率转换为线性频率
H = zeros(NFFT/2+1, numFilters);
for i = 1:numFilters
H(:,i) = triang(length(f)-2)' * (f(i+1)-f(i))/(f(i+2)-f(i));
end
```
6. 应用梅尔滤波器组
```
filtered = H * psd(1:NFFT/2+1,:);
```
7. 取对数
```
filtered = log(filtered);
```
8. 计算DCT
```
numCoeffs = 13;
dctMatrix = dctmtx(numFilters);
coeffs = dctMatrix(1:numCoeffs,:) * filtered;
```
最终,`coeffs`就是MFCC特征向量。注意,上述代码只是一个简单的示例,实际应用中可能需要更多的预处理步骤(例如去除噪声)和后续分析步骤(例如分类、聚类等)。
阅读全文