# 构建TF-IDF特征向量 vectorizer = TfidfVectorizer() X = vectorizer.fit_transform(data['word_list'])
时间: 2024-05-20 17:14:14 浏览: 270
python_tfidf:计算TF-IDF的示例源代码
这段代码使用TF-IDF算法将文本数据转换为特征向量。具体来说,它使用TfidfVectorizer类将文本数据data['word_list']转换为TF-IDF特征向量矩阵X。
TF-IDF是一种用于信息检索和文本挖掘的常用技术,它可以衡量一个词在文本中的重要性。TF-IDF分为两部分:TF(Term Frequency)和IDF(Inverse Document Frequency)。TF表示一个词在文本中出现的频率,IDF表示这个词在整个文本集合中的重要性。TF-IDF将两者相乘得到一个词的TF-IDF值,该值越大,表示该词对文本特征的贡献越大。
在这段代码中,TfidfVectorizer类会先将文本数据分词,并统计每个词在每个文本中的出现次数(即TF),然后计算每个词的IDF值,最后将TF和IDF相乘得到每个词的TF-IDF值。最终,这些TF-IDF值被组合成文本的特征向量矩阵X。
阅读全文