mimiclogs-router-dmf-172.61.121.220-2022-12-15 {"event_header": ["V.1.0.0", "2022-12-16T12:14:03+08:00", "INFO", "process_id:2997; thread_id:140067355207424; line_id:1551", "dmf"], "event_entity": {"event_domain": "mimicrouter_control_panel", "event_action": "del_route", "event_object": "router_table", "event_service": "multimode_ruling_router_item", "event_status": "router_fail", "event_subject": " router_abnormal", "mimic_multimode_ruling.executor_info": ["169.254.2.102", "169.254.2.201", "169.254.2.202"], "mimicrouter.msg_src": "router_multimode_ruling", "mimicrouter.exception_time": "2022-12-16 12:13:37", "router_multimode_ruling": [{"router_multimode_ruling.exception_type": "redundant_route_item", "router_multimode_ruling.action": "del_route", "router_multimode_ruling.executor_id": "169.254.2.201", "router_multimode_ruling.executor_role": "slave", "router_multimode_ruling.prefix": "111.222.56.0", "router_multimode_ruling.mask": 24, "router_multimode_ruling.nexthop_info.nexthop": [""], "router_multimode_ruling.nexthop_info.ifname": [""], "router_multimode_ruling.nexthop_info.label": [[]]}]}} 帮我解析一下这段es数据,并用java写一段读取多条es数据,计算event_header和mimicrouter.exception_time差值平均值的代码
时间: 2023-07-06 12:43:55 浏览: 146
MySQL Router 8.0.27(mysql-router-community-8.0.27-1.el7.x86_64)
这段ES数据是一条日志记录,包含了事件头和事件实体。其中事件头包括版本号、时间戳、日志级别、进程ID、线程ID和日志来源等信息;事件实体包括事件域、事件动作、事件对象、事件服务、事件状态、事件主题、执行者信息、消息来源、异常时间和多模式路由器等信息。
以下是Java代码示例,用于读取多条ES数据并计算event_header和mimicrouter.exception_time差值平均值:
```java
import org.elasticsearch.action.search.SearchRequest;
import org.elasticsearch.action.search.SearchResponse;
import org.elasticsearch.client.RestHighLevelClient;
import org.elasticsearch.common.unit.TimeValue;
import org.elasticsearch.index.query.QueryBuilders;
import org.elasticsearch.search.SearchHit;
import org.elasticsearch.search.builder.SearchSourceBuilder;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
public class ESReader {
private RestHighLevelClient client;
public ESReader(RestHighLevelClient client) {
this.client = client;
}
public double getAvgTimestampDiff(String index) throws IOException {
SearchRequest searchRequest = new SearchRequest(index);
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
searchSourceBuilder.query(QueryBuilders.matchAllQuery());
searchSourceBuilder.size(1000); // 最多返回1000条数据
searchSourceBuilder.timeout(TimeValue.timeValueSeconds(5)); // 查询超时时间
searchRequest.source(searchSourceBuilder);
SearchResponse searchResponse = client.search(searchRequest);
SearchHit[] searchHits = searchResponse.getHits().getHits();
List<Long> timestampDiffs = new ArrayList<>();
for (SearchHit searchHit : searchHits) {
String timestampStr = searchHit.getSourceAsMap().get("event_header").toString().split(",")[1];
long timestamp = java.sql.Timestamp.valueOf(timestampStr.substring(1, timestampStr.length() - 1)).getTime();
String exceptionTimeStr = searchHit.getSourceAsMap().get("mimicrouter.exception_time").toString();
long exceptionTime = java.sql.Timestamp.valueOf(exceptionTimeStr.replace(" ", "T")).getTime();
timestampDiffs.add(exceptionTime - timestamp);
}
double avgTimestampDiff = timestampDiffs.stream().mapToLong(Long::longValue).average().orElse(0.0);
return avgTimestampDiff;
}
}
```
该代码使用了Elasticsearch的Java High Level REST Client,通过查询ES索引获取多条数据。然后,根据每条数据的event_header和mimicrouter.exception_time计算时间差,并求平均值。其中,timestamp和exceptionTime需要根据具体数据格式进行调整。
阅读全文