解释代码token for line in tokens for token in line

时间: 2024-04-23 11:07:44 浏览: 9
这是一个列表推导式,用于将一个二维列表tokens中的元素,即每个子列表line中的每个元素token,依次放入一个新的一维列表中。 具体实现过程是:首先遍历tokens中的每个子列表line,然后再遍历每个子列表中的元素token,将其依次放入一个新的列表中。最终得到的列表就是一个一维列表,其中包含了tokens中所有的元素。
相关问题

解释token for line in tokens for token in line

这是一个列表推导式,表示将tokens这个二维列表中的每个元素,也就是每个子列表(代表一个句子)中的每个元素(代表一个单词或标点符号),依次放入一个新的列表中。 具体实现过程是:首先遍历tokens中的每个子列表,即每个句子,然后再遍历每个子列表中的元素,即每个单词或标点符号。将元素依次放入一个新的列表中,最终得到一个一维列表,其中每个元素都是tokens中的一个单词或标点符号。

token for line in tokens for token in line

`token for line in tokens for token in line` 是一个嵌套的列表推导式,用于对嵌套列表 `tokens` 中的每个元素进行操作,并返回一个扁平化的列表。 解析这个表达式: - `for line in tokens` 是一个外层循环语句,遍历列表 `tokens` 中的每个元素,并将当前元素赋值给变量 `line`。 - `for token in line` 是一个内层循环语句,遍历变量 `line` 所指向的元素(也是一个列表)中的每个元素,并将当前元素赋值给变量 `token`。 - `token` 是内层循环语句中的表达式,表示将当前的 `token` 添加到新的列表中。 因此,这个表达式的作用是遍历嵌套列表 `tokens` 中的每个元素

相关推荐

import torch from sklearn.metrics.pairwise import cosine_similarity from transformers import BertTokenizer, BertModel # 加载种子词库 seed_words = [] with open("output/base_words.txt", "r", encoding="utf-8") as f: for line in f: seed_words.append(line.strip()) print(seed_words) # 加载微博文本数据 text_data = [] with open("output/weibo1.txt", "r", encoding="utf-8") as f: for line in f: text_data.append(line.strip()) print(text_data) # 加载BERT模型和分词器 tokenizer = BertTokenizer.from_pretrained('bert-base-chinese') model = BertModel.from_pretrained('bert-base-chinese') # 构建隐私词库 privacy_words = set(seed_words) for text in text_data: # 对文本进行分词,并且添加特殊标记 tokens = ["[CLS]"] + tokenizer.tokenize(text) + ["[SEP]"] print(tokens) token_ids = tokenizer.convert_tokens_to_ids(tokens) print(token_ids) segment_ids = [0] * len(token_ids) # 转换为张量,调用BERT模型进行编码 token_tensor = torch.tensor([token_ids]) segment_tensor = torch.tensor([segment_ids]) with torch.no_grad(): outputs = model(token_tensor, segment_tensor) encoded_layers = outputs[0] print(encoded_layers) # 对于每个词,计算它与种子词的相似度 for i in range(1, len(tokens)-1): print(tokens[i]) word = tokens[i] if word in seed_words: continue word_tensor = encoded_layers[0][i].reshape(1, -1) sim = cosine_similarity(encoded_layers[0][1:-1], word_tensor, dense_output=False)[0].max() if sim > 0.5: privacy_words.add(word) print(privacy_words) 上述代码中的这几行代码:# 对于每个词,计算它与种子词的相似度 for i in range(1, len(tokens)-1): print(tokens[i]) word = tokens[i] if word in seed_words: continue word_tensor = encoded_layers[0][i].reshape(1, -1) sim = cosine_similarity(encoded_layers[0][1:-1], word_tensor, dense_output=False)[0].max() 我怎么觉得并不是微博文本中的词汇与种子词在比较相似度,而是微博文本中一句话的每个词在和这句话比较呢,我的判断对吗?如果对的话,请帮我在上述代码基础上修改代码

import jieba import torch from sklearn.metrics.pairwise import cosine_similarity from transformers import BertTokenizer, BertModel seed_words = ['姓名'] # with open("output/base_words.txt", "r", encoding="utf-8") as f: # for line in f: # seed_words.append(line.strip()) # print(seed_words) # 加载微博文本数据 text_data = [] with open("output/weibo1.txt", "r", encoding="utf-8") as f: for line in f: text_data.append(line.strip()) # print(text_data) # 加载BERT模型和分词器 tokenizer = BertTokenizer.from_pretrained('bert-base-chinese') model = BertModel.from_pretrained('bert-base-chinese') jieba.load_userdict('data/userdict.txt') # 构建隐私词库 privacy_words = set() for text in text_data: words = jieba.lcut(text.strip()) # 对文本进行分词,并且添加特殊标记 tokens = ["[CLS]"] + words + ["[SEP]"] # print(tokens) # # 对文本进行分词,并且添加特殊标记 # tokens = ["[CLS]"] + tokenizer.tokenize(text) + ["[SEP]"] # print(tokens) token_ids = tokenizer.convert_tokens_to_ids(tokens) # print(token_ids) segment_ids = [0] * len(token_ids) # 转换为张量,调用BERT模型进行编码 token_tensor = torch.tensor([token_ids]) segment_tensor = torch.tensor([segment_ids]) with torch.no_grad(): outputs = model(token_tensor, segment_tensor) encoded_layers = outputs[0] # print(encoded_layers) # 对于每个词,计算它与种子词的相似度 for i in range(1, len(tokens)-1): # print(tokens[i]) word = tokens[i] if word in seed_words: continue word_tensor = encoded_layers[0][i].reshape(1, -1) sim = cosine_similarity(encoded_layers[0][1:-1], word_tensor, dense_output=False)[0].max() if sim > 0.5 and len(word) > 1: privacy_words.add(word) print(privacy_words) # 输出隐私词库 with open("output/privacy_words.txt", "w", encoding="utf-8") as f: for word in privacy_words: f.write(word + "\n") 上述代码使用bert微调来训练自己的微博数据来获取词向量,然后计算与种子词的相似度,输出结果会不会更准确,修改代码帮我实现一下

import jieba import torch from transformers import BertTokenizer, BertModel, BertConfig # 自定义词汇表路径 vocab_path = "output/user_vocab.txt" count = 0 with open(vocab_path, 'r', encoding='utf-8') as file: for line in file: count += 1 user_vocab = count print(user_vocab) # 种子词 seed_words = ['姓名'] # 加载微博文本数据 text_data = [] with open("output/weibo_data.txt", "r", encoding="utf-8") as f: for line in f: text_data.append(line.strip()) print(text_data) # 加载BERT分词器,并使用自定义词汇表 tokenizer = BertTokenizer.from_pretrained('bert-base-chinese', vocab_file=vocab_path) config = BertConfig.from_pretrained("bert-base-chinese", vocab_size=user_vocab) # 加载BERT模型 model = BertModel.from_pretrained('bert-base-chinese', config=config, ignore_mismatched_sizes=True) seed_tokens = ["[CLS]"] + seed_words + ["[SEP]"] seed_token_ids = tokenizer.convert_tokens_to_ids(seed_tokens) seed_segment_ids = [0] * len(seed_token_ids) # 转换为张量,调用BERT模型进行编码 seed_token_tensor = torch.tensor([seed_token_ids]) seed_segment_tensor = torch.tensor([seed_segment_ids]) model.eval() with torch.no_grad(): seed_outputs = model(seed_token_tensor, seed_segment_tensor) seed_encoded_layers = seed_outputs[0] jieba.load_userdict('data/user_dict.txt') # 构建隐私词库 privacy_words = set() privacy_words_sim = set() for text in text_data: words = jieba.lcut(text.strip()) tokens = ["[CLS]"] + words + ["[SEP]"] token_ids = tokenizer.convert_tokens_to_ids(tokens) segment_ids = [0] * len(token_ids) # 转换为张量,调用BERT模型进行编码 token_tensor = torch.tensor([token_ids]) segment_tensor = torch.tensor([segment_ids]) model.eval() with torch.no_grad(): outputs = model(token_tensor, segment_tensor) encoded_layers = outputs[0] # 对于每个词,计算它与种子词的余弦相似度 for i in range(1, len(tokens) - 1): word = tokens[i] if word in seed_words: continue if len(word) <= 1: continue sim_scores = [] for j in range(len(seed_encoded_layers)): sim_scores.append(torch.cosine_similarity(seed_encoded_layers[j][0], encoded_layers[j][i], dim=0).item()) cos_sim = sum(sim_scores) / len(sim_scores) print(cos_sim, word) if cos_sim >= 0.5: privacy_words.add(word) privacy_words_sim.add((word, cos_sim)) print(privacy_words) # 输出隐私词库 with open("output/privacy_words.txt", "w", encoding="utf-8") as f1: for word in privacy_words: f1.write(word + '\n') with open("output/privacy_words_sim.txt", "w", encoding="utf-8") as f2: for word, cos_sim in privacy_words_sim: f2.write(word + "\t" + str(cos_sim) + "\n") 详细解释上述代码,包括这行代码的作用以及为什么要这样做?

import jieba import torch from sklearn.metrics.pairwise import cosine_similarity from transformers import BertTokenizer, BertModel seed_words = ['姓名'] # 加载微博文本数据 text_data = [] with open("output/weibo1.txt", "r", encoding="utf-8") as f: for line in f: text_data.append(line.strip()) # 加载BERT模型和分词器 tokenizer = BertTokenizer.from_pretrained('bert-base-chinese') model = BertModel.from_pretrained('bert-base-chinese') seed_tokens = ["[CLS]"] + seed_words + ["[SEP]"] seed_token_ids = tokenizer.convert_tokens_to_ids(seed_tokens) seed_segment_ids = [0] * len(seed_token_ids) # 转换为张量,调用BERT模型进行编码 seed_token_tensor = torch.tensor([seed_token_ids]) seed_segment_tensor = torch.tensor([seed_segment_ids]) with torch.no_grad(): seed_outputs = model(seed_token_tensor, seed_segment_tensor) seed_encoded_layers = seed_outputs[0] jieba.load_userdict('data/userdict.txt') # 构建隐私词库 privacy_words = set() for text in text_data: words = jieba.lcut(text.strip()) tokens = ["[CLS]"] + words + ["[SEP]"] token_ids = tokenizer.convert_tokens_to_ids(tokens) segment_ids = [0] * len(token_ids) # 转换为张量,调用BERT模型进行编码 token_tensor = torch.tensor([token_ids]) segment_tensor = torch.tensor([segment_ids]) with torch.no_grad(): outputs = model(token_tensor, segment_tensor) encoded_layers = outputs[0] # 对于每个词,计算它与种子词的相似度 for i in range(1, len(tokens)-1): word = tokens[i] if word in seed_words: continue word_tensor = encoded_layers[0][i].reshape(1, -1) seed_tensors =seed_encoded_layers[0][i].reshape(1, -1) # 计算当前微博词汇与种子词的相似度 sim = cosine_similarity(word_tensor, seed_tensors, dense_output=False)[0].max() print(sim, word) if sim > 0.5 and len(word) > 1: privacy_words.add(word) print(privacy_words) 上述代码运行之后有错误,报错信息为:Traceback (most recent call last): File "E:/PyCharm Community Edition 2020.2.2/Project/WordDict/newsim.py", line 397, in <module> seed_tensors =seed_encoded_layers[0][i].reshape(1, -1) IndexError: index 3 is out of bounds for dimension 0 with size 3. 请帮我修改

def parse_corpus(infile, outfile): '''parse the corpus of the infile into the outfile''' space = ' ' i = 0 def tokenize(text): return [lemma(token) for token in text.split()] with open(outfile, 'w', encoding='utf-8') as fout: # wiki = WikiCorpus(infile, lemmatize=False, dictionary={}) # gensim中的维基百科处理类WikiCorpus wiki = WikiCorpus(infile, tokenizer_func=tokenize, dictionary={}) # gensim中的维基百科处理类WikiCorpus for text in wiki.get_texts(): fout.write(space.join(text) + '\n') i += 1 if i % 10000 == 0: logger.info('Saved ' + str(i) + ' articles') 报错D:\软件\python\lib\site-packages\gensim\utils.py:1333: UserWarning: detected Windows; aliasing chunkize to chunkize_serial warnings.warn("detected %s; aliasing chunkize to chunkize_serial" % entity) Traceback (most recent call last): File "D:\pythonFiles\图灵\Python_project\self_learn\大语言模型\WikiExtractor.py", line 52, in <module> parse_corpus(infile, outfile) File "D:\pythonFiles\图灵\Python_project\self_learn\大语言模型\WikiExtractor.py", line 29, in parse_corpus for text in wiki.get_texts(): File "D:\软件\python\lib\site-packages\gensim\corpora\wikicorpus.py", line 693, in get_texts for tokens, title, pageid in pool.imap(_process_article, group): File "D:\软件\python\lib\multiprocessing\pool.py", line 870, in next raise value File "D:\软件\python\lib\multiprocessing\pool.py", line 537, in _handle_tasks put(task) File "D:\软件\python\lib\multiprocessing\connection.py", line 211, in send self._send_bytes(_ForkingPickler.dumps(obj)) File "D:\软件\python\lib\multiprocessing\reduction.py", line 51, in dumps cls(buf, protocol).dump(obj) AttributeError: Can't pickle local object 'parse_corpus.<locals>.tokenize' 怎么优化

import torch from transformers import BertTokenizer, BertModel # 加载种子词库 seed_words = [] with open("output/base_words.txt", "r", encoding="utf-8") as f: for line in f: seed_words.append(line.strip()) print(seed_words) # 加载微博文本数据 text_data = [] with open("output/weibo1.txt", "r", encoding="utf-8") as f: for line in f: text_data.append(line.strip()) print(text_data) # 加载BERT模型和分词器 tokenizer = BertTokenizer.from_pretrained('bert-base-chinese') model = BertModel.from_pretrained('bert-base-chinese') # 构建隐私词库 privacy_words = set(seed_words) for text in text_data: # 对文本进行分词,并且添加特殊标记 tokens = ["[CLS]"] + tokenizer.tokenize(text) + ["[SEP]"] token_ids = tokenizer.convert_tokens_to_ids(tokens) segment_ids = [0] * len(token_ids) # 转换为张量,调用BERT模型进行编码 token_tensor = torch.tensor([token_ids]) segment_tensor = torch.tensor([segment_ids]) with torch.no_grad(): outputs = model(token_tensor, segment_tensor) encoded_layers = outputs[0] # 对于每个词,计算它与种子词的相似度 for i in range(1, len(tokens)-1): word = tokens[i] if word in seed_words: continue word_tensor = encoded_layers[0][i].reshape(1, -1) sim = cosine_similarity(word_tensor, encoded_layers[0][1:-1])[0].max() # if sim > 0.5: # privacy_words.add(word) # 输出隐私词库 with open("output/privacy_words.txt", "w", encoding="utf-8") as f: for word in privacy_words: f.write(word + "\n") 上述代码中的 sim = cosine_similarity(word_tensor, encoded_layers[0][1:-1])[0].max() 的 cosine_similarity()应该用的是哪个库中的,是正确的

最新推荐

recommend-type

机器学习作业-基于python实现的垃圾邮件分类源码(高分项目)

<项目介绍> 机器学习作业-基于python实现的垃圾邮件分类源码(高分项目) - 不懂运行,下载完可以私聊问,可远程教学 该资源内项目源码是个人的毕设,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。 --------
recommend-type

Dijkstra算法:探索最短路径的数学之美.pdf

Dijkstra算法,全名为Dijkstra's Shortest Path Algorithm,是一种用于寻找加权图中最短路径的算法。它由荷兰计算机科学家Edsger W. Dijkstra在1959年提出,并迅速成为图论和网络理论中最重要的算法之一。本文将探讨Dijkstra算法的起源、原理、应用以及它在解决实际问题中的重要性。 一、Dijkstra算法的起源 Dijkstra算法最初是为了解决荷兰阿姆斯特丹的电话交换网络中的路径规划问题而开发的。在那个时代,电话网络的规模迅速扩大,传统的手动路径规划方法已经无法满足需求。Dijkstra意识到,通过数学方法可以高效地解决这类问题,于是他开始着手研究并最终提出了Dijkstra算法。这个算法不仅在电话网络中得到了应用,而且很快在交通、物流、计算机网络等众多领域展现了其强大的实用价值。
recommend-type

京瓷TASKalfa系列维修手册:安全与操作指南

"该资源是一份针对京瓷TASKalfa系列多款型号打印机的维修手册,包括TASKalfa 2020/2021/2057,TASKalfa 2220/2221,TASKalfa 2320/2321/2358,以及DP-480,DU-480,PF-480等设备。手册标注为机密,仅供授权的京瓷工程师使用,强调不得泄露内容。手册内包含了重要的安全注意事项,提醒维修人员在处理电池时要防止爆炸风险,并且应按照当地法规处理废旧电池。此外,手册还详细区分了不同型号产品的打印速度,如TASKalfa 2020/2021/2057的打印速度为20张/分钟,其他型号则分别对应不同的打印速度。手册还包括修订记录,以确保信息的最新和准确性。" 本文档详尽阐述了京瓷TASKalfa系列多功能一体机的维修指南,适用于多种型号,包括速度各异的打印设备。手册中的安全警告部分尤为重要,旨在保护维修人员、用户以及设备的安全。维修人员在操作前必须熟知这些警告,以避免潜在的危险,如不当更换电池可能导致的爆炸风险。同时,手册还强调了废旧电池的合法和安全处理方法,提醒维修人员遵守地方固体废弃物法规。 手册的结构清晰,有专门的修订记录,这表明手册会随着设备的更新和技术的改进不断得到完善。维修人员可以依靠这份手册获取最新的维修信息和操作指南,确保设备的正常运行和维护。 此外,手册中对不同型号的打印速度进行了明确的区分,这对于诊断问题和优化设备性能至关重要。例如,TASKalfa 2020/2021/2057系列的打印速度为20张/分钟,而TASKalfa 2220/2221和2320/2321/2358系列则分别具有稍快的打印速率。这些信息对于识别设备性能差异和优化工作流程非常有用。 总体而言,这份维修手册是京瓷TASKalfa系列设备维修保养的重要参考资料,不仅提供了详细的操作指导,还强调了安全性和合规性,对于授权的维修工程师来说是不可或缺的工具。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】入侵检测系统简介

![【进阶】入侵检测系统简介](http://www.csreviews.cn/wp-content/uploads/2020/04/ce5d97858653b8f239734eb28ae43f8.png) # 1. 入侵检测系统概述** 入侵检测系统(IDS)是一种网络安全工具,用于检测和预防未经授权的访问、滥用、异常或违反安全策略的行为。IDS通过监控网络流量、系统日志和系统活动来识别潜在的威胁,并向管理员发出警报。 IDS可以分为两大类:基于网络的IDS(NIDS)和基于主机的IDS(HIDS)。NIDS监控网络流量,而HIDS监控单个主机的活动。IDS通常使用签名检测、异常检测和行
recommend-type

轨道障碍物智能识别系统开发

轨道障碍物智能识别系统是一种结合了计算机视觉、人工智能和机器学习技术的系统,主要用于监控和管理铁路、航空或航天器的运行安全。它的主要任务是实时检测和分析轨道上的潜在障碍物,如行人、车辆、物体碎片等,以防止这些障碍物对飞行或行驶路径造成威胁。 开发这样的系统主要包括以下几个步骤: 1. **数据收集**:使用高分辨率摄像头、雷达或激光雷达等设备获取轨道周围的实时视频或数据。 2. **图像处理**:对收集到的图像进行预处理,包括去噪、增强和分割,以便更好地提取有用信息。 3. **特征提取**:利用深度学习模型(如卷积神经网络)提取障碍物的特征,如形状、颜色和运动模式。 4. **目标
recommend-type

小波变换在视频压缩中的应用

"多媒体通信技术视频信息压缩与处理(共17张PPT).pptx" 多媒体通信技术涉及的关键领域之一是视频信息压缩与处理,这在现代数字化社会中至关重要,尤其是在传输和存储大量视频数据时。本资料通过17张PPT详细介绍了这一主题,特别是聚焦于小波变换编码和分形编码两种新型的图像压缩技术。 4.5.1 小波变换编码是针对宽带图像数据压缩的一种高效方法。与离散余弦变换(DCT)相比,小波变换能够更好地适应具有复杂结构和高频细节的图像。DCT对于窄带图像信号效果良好,其变换系数主要集中在低频部分,但对于宽带图像,DCT的系数矩阵中的非零系数分布较广,压缩效率相对较低。小波变换则允许在频率上自由伸缩,能够更精确地捕捉图像的局部特征,因此在压缩宽带图像时表现出更高的效率。 小波变换与傅里叶变换有本质的区别。傅里叶变换依赖于一组固定频率的正弦波来表示信号,而小波分析则是通过母小波的不同移位和缩放来表示信号,这种方法对非平稳和局部特征的信号描述更为精确。小波变换的优势在于同时提供了时间和频率域的局部信息,而傅里叶变换只提供频率域信息,却丢失了时间信息的局部化。 在实际应用中,小波变换常常采用八带分解等子带编码方法,将低频部分细化,高频部分则根据需要进行不同程度的分解,以此达到理想的压缩效果。通过改变小波的平移和缩放,可以获取不同分辨率的图像,从而实现按需的图像质量与压缩率的平衡。 4.5.2 分形编码是另一种有效的图像压缩技术,特别适用于处理不规则和自相似的图像特征。分形理论源自自然界的复杂形态,如山脉、云彩和生物组织,它们在不同尺度上表现出相似的结构。通过分形编码,可以将这些复杂的形状和纹理用较少的数据来表示,从而实现高压缩比。分形编码利用了图像中的分形特性,将其转化为分形块,然后进行编码,这在处理具有丰富细节和不规则边缘的图像时尤其有效。 小波变换和分形编码都是多媒体通信技术中视频信息压缩的重要手段,它们分别以不同的方式处理图像数据,旨在减少存储和传输的需求,同时保持图像的质量。这两种技术在现代图像处理、视频编码标准(如JPEG2000)中都有广泛应用。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【进阶】Python高级加密库cryptography

![【进阶】Python高级加密库cryptography](https://img-blog.csdnimg.cn/20191105183454149.jpg) # 2.1 AES加密算法 ### 2.1.1 AES加密原理 AES(高级加密标准)是一种对称块密码,由美国国家标准与技术研究院(NIST)于2001年发布。它是一种分组密码,这意味着它一次处理固定大小的数据块(通常为128位)。AES使用密钥长度为128、192或256位的迭代密码,称为Rijndael密码。 Rijndael密码基于以下基本操作: - 字节替换:将每个字节替换为S盒中的另一个字节。 - 行移位:将每一行
recommend-type

linuxjar包启动脚本

Linux中的jar包通常指的是Java Archive(Java归档文件),它是一个包含Java类、资源和其他相关文件的压缩文件。启动一个Java应用的jar包通常涉及到使用Java的Runtime或JVM(Java虚拟机)。 一个简单的Linux启动jar包的脚本(例如用bash编写)可能会类似于这样: ```bash #!/bin/bash # Java启动脚本 # 设置JAVA_HOME环境变量,指向Java安装路径 export JAVA_HOME=/path/to/your/java/jdk # jar包的路径 JAR_FILE=/path/to/your/applicat