写Knn脚本代码实现,并解释

时间: 2023-08-31 17:22:26 浏览: 48
### 回答1: KNN(k-最近邻)是一种用于分类和回归的基本机器学习算法。在分类问题中,KNN算法将新样本分配给与其最接近的k个训练样本中最常见的类。在回归问题中,KNN算法通过平均其k个最近邻的输出值来预测新样本的输出值。下面是一个Python脚本代码,实现了KNN算法的分类部分。 ```python import numpy as np class KNN: def __init__(self, k): self.k = k def fit(self, X, y): self.X_train = X self.y_train = y def predict(self, X): distances = np.zeros((X.shape[0], self.X_train.shape[0])) for i, x in enumerate(X): for j, x_train in enumerate(self.X_train): distances[i,j] = np.sqrt(np.sum((x - x_train)**2)) nearest_neighbors = np.argsort(distances, axis=1)[:,:self.k] y_pred = np.zeros(X.shape[0]) for i, neighbors in enumerate(nearest_neighbors): y_pred[i] = np.bincount(self.y_train[neighbors]).argmax() return y_pred ``` 代码中的KNN类包含三个方法: 1. `__init__`:用于初始化KNN模型,并将K值存储在类属性中。 2. `fit`:用于训练KNN模型,接受一个特征矩阵X和对应的目标值y作为输入,将其存储在类属性中。 3. `predict`:用于对新样本进行预测,接受一个特征矩阵X作为输入,并返回一个包含预测目标值的numpy数组。 在KNN模型的`predict`方法中,首先计算测试集中每个样本和训练集中所有样本之间的距离,并将其存储在一个距离矩阵中。然后,通过对距离矩阵的每一行进行排序,找到每个测试样本的k个最近邻。最后,使用numpy的`bincount`函数来统计k个最近邻中出现最频繁的目标值,并将其作为该测试样本的预测目标值。 需要注意的是,该脚本只实现了KNN算法的分类部分,如果要进行回归,需要将最后一行代码修改为平均k个最近邻的目标值,而不是使用出现最频繁的目标值。 ### 回答2: KNN(K-Nearest Neighbors,K近邻算法)是一种简单但有效的机器学习算法,用于分类和回归问题。下面是一个使用Python编写的KNN脚本代码示例,并对代码进行解释。 ```python import numpy as np from collections import Counter class KNN: def __init__(self, k=3): self.k = k def fit(self, X, y): self.X_train = X self.y_train = y def euclidean_distance(self, X1, X2): return np.sqrt(np.sum((X1 - X2) ** 2, axis=1)) def predict(self, X_test): y_pred = [] for sample in X_test: distances = self.euclidean_distance(sample, self.X_train) nearest_indices = np.argsort(distances)[:self.k] nearest_labels = self.y_train[nearest_indices] majority_vote = Counter(nearest_labels).most_common(1)[0][0] y_pred.append(majority_vote) return np.array(y_pred) ``` 这段代码实现了一个简单的KNN分类器。其中,`KNN`类包含了三个主要方法: 1. `__init__(self, k=3)`:初始化方法,指定k值,默认为3。 2. `fit(self, X, y)`:训练方法,用于传入训练数据集X和对应的标签y。 3. `predict(self, X_test)`:预测方法,用于传入测试数据集X_test并返回预测结果。 在初始化方法中,我们可以设置k值。k值代表了选择训练集中最近的k个样本作为邻居。在fit方法中,我们保存训练数据集和对应的标签。predict方法使用欧氏距离计算测试样本与每个训练样本之间的距离,并选择距离最近的k个邻居。然后通过投票方式,根据这k个邻居的标签来预测测试样本的类别。 KNN算法的原理很简单,它属于一种基于实例的学习方法,通过比较相邻样本的标签来进行分类。在预测过程中,KNN算法会根据给定的k值,计算出测试样本与训练集中所有样本的距离,然后选择距离最近的k个邻居。最后,根据这k个邻居的标签进行投票,选择出现最频繁的标签作为预测结果。 ### 回答3: KNN(K-最近邻)是一种基本的机器学习算法,用于分类和回归问题。KNN算法的思想是基于实例的学习方法,通过计算未知样本与已知样本之间的距离来进行预测或分类。下面是一个KNN脚本代码实现的简要步骤及解释: 1. 导入所需的库和模块:在代码开头,导入所需的库和模块,例如numpy和scikit-learn等。 2. 准备数据集:准备用于训练和测试的数据集,包括特征矩阵和标签向量。可以使用scikit-learn库中的load_iris等函数加载示例数据集。 3. 定义距离度量函数:根据任务需求,定义距离度量函数,例如欧几里得距离或曼哈顿距离等。这个函数用于计算未知样本与已知样本之间的距离。 4. 实现KNN算法:编写一个函数来实现KNN算法。首先,对于每个未知样本,计算它与所有已知样本的距离。然后,选择K个最近邻样本。可以使用numpy的argsort函数对距离进行排序,选择前K个最小的距离对应的样本。最后,根据最近邻样本的标签进行预测或分类。 5. 评估算法性能:对于分类问题,可以使用分类准确率等指标来评估算法的性能。可以使用scikit-learn库中的train_test_split函数将数据集划分为训练集和测试集,然后在测试集上使用实现的KNN算法进行预测,并计算准确率。 通过以上步骤的代码实现,可以得到一个简单的KNN算法。这个算法可以根据训练集中已有的样本来对未知样本进行预测或分类。KNN算法的核心思想是通过找到K个最近邻样本来进行预测,这些样本通常具有相似的特征和标签,因此可以通过它们来预测未知样本的标签。KNN算法简单易懂,但在处理大规模数据集时计算复杂度较高,因为需要计算未知样本与所有已知样本的距离。

相关推荐

最新推荐

recommend-type

机器学习实战 - KNN(K近邻)算法PDF知识点详解 + 代码实现

邻近算法,或者说K最邻近(KNN,K-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一。所谓K最近邻,就是K个最近的邻居的意思,说的是每个样本都可以用它最接近的K个邻近值来代表。近邻算法就是将数据...
recommend-type

基于python实现KNN分类算法

主要为大家详细介绍了基于python实现KNN分类算法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
recommend-type

机器学习之KNN算法原理及Python实现方法详解

主要介绍了机器学习之KNN算法原理及Python实现方法,结合实例形式详细分析了机器学习KNN算法原理以及Python相关实现步骤、操作技巧与注意事项,需要的朋友可以参考下
recommend-type

华为OD机试D卷 - 用连续自然数之和来表达整数 - 免费看解析和代码.html

私信博主免费获取真题解析以及代码
recommend-type

Screenshot_2024-05-10-20-21-01-857_com.chaoxing.mobile.jpg

Screenshot_2024-05-10-20-21-01-857_com.chaoxing.mobile.jpg
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

list根据id查询pid 然后依次获取到所有的子节点数据

可以使用递归的方式来实现根据id查询pid并获取所有子节点数据。具体实现可以参考以下代码: ``` def get_children_nodes(nodes, parent_id): children = [] for node in nodes: if node['pid'] == parent_id: node['children'] = get_children_nodes(nodes, node['id']) children.append(node) return children # 测试数
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。