写Knn脚本代码实现,并解释

时间: 2023-08-31 10:22:26 浏览: 91
### 回答1: KNN(k-最近邻)是一种用于分类和回归的基本机器学习算法。在分类问题中,KNN算法将新样本分配给与其最接近的k个训练样本中最常见的类。在回归问题中,KNN算法通过平均其k个最近邻的输出值来预测新样本的输出值。下面是一个Python脚本代码,实现了KNN算法的分类部分。 ```python import numpy as np class KNN: def __init__(self, k): self.k = k def fit(self, X, y): self.X_train = X self.y_train = y def predict(self, X): distances = np.zeros((X.shape[0], self.X_train.shape[0])) for i, x in enumerate(X): for j, x_train in enumerate(self.X_train): distances[i,j] = np.sqrt(np.sum((x - x_train)**2)) nearest_neighbors = np.argsort(distances, axis=1)[:,:self.k] y_pred = np.zeros(X.shape[0]) for i, neighbors in enumerate(nearest_neighbors): y_pred[i] = np.bincount(self.y_train[neighbors]).argmax() return y_pred ``` 代码中的KNN类包含三个方法: 1. `__init__`:用于初始化KNN模型,并将K值存储在类属性中。 2. `fit`:用于训练KNN模型,接受一个特征矩阵X和对应的目标值y作为输入,将其存储在类属性中。 3. `predict`:用于对新样本进行预测,接受一个特征矩阵X作为输入,并返回一个包含预测目标值的numpy数组。 在KNN模型的`predict`方法中,首先计算测试集中每个样本和训练集中所有样本之间的距离,并将其存储在一个距离矩阵中。然后,通过对距离矩阵的每一行进行排序,找到每个测试样本的k个最近邻。最后,使用numpy的`bincount`函数来统计k个最近邻中出现最频繁的目标值,并将其作为该测试样本的预测目标值。 需要注意的是,该脚本只实现了KNN算法的分类部分,如果要进行回归,需要将最后一行代码修改为平均k个最近邻的目标值,而不是使用出现最频繁的目标值。 ### 回答2: KNN(K-Nearest Neighbors,K近邻算法)是一种简单但有效的机器学习算法,用于分类和回归问题。下面是一个使用Python编写的KNN脚本代码示例,并对代码进行解释。 ```python import numpy as np from collections import Counter class KNN: def __init__(self, k=3): self.k = k def fit(self, X, y): self.X_train = X self.y_train = y def euclidean_distance(self, X1, X2): return np.sqrt(np.sum((X1 - X2) ** 2, axis=1)) def predict(self, X_test): y_pred = [] for sample in X_test: distances = self.euclidean_distance(sample, self.X_train) nearest_indices = np.argsort(distances)[:self.k] nearest_labels = self.y_train[nearest_indices] majority_vote = Counter(nearest_labels).most_common(1)[0][0] y_pred.append(majority_vote) return np.array(y_pred) ``` 这段代码实现了一个简单的KNN分类器。其中,`KNN`类包含了三个主要方法: 1. `__init__(self, k=3)`:初始化方法,指定k值,默认为3。 2. `fit(self, X, y)`:训练方法,用于传入训练数据集X和对应的标签y。 3. `predict(self, X_test)`:预测方法,用于传入测试数据集X_test并返回预测结果。 在初始化方法中,我们可以设置k值。k值代表了选择训练集中最近的k个样本作为邻居。在fit方法中,我们保存训练数据集和对应的标签。predict方法使用欧氏距离计算测试样本与每个训练样本之间的距离,并选择距离最近的k个邻居。然后通过投票方式,根据这k个邻居的标签来预测测试样本的类别。 KNN算法的原理很简单,它属于一种基于实例的学习方法,通过比较相邻样本的标签来进行分类。在预测过程中,KNN算法会根据给定的k值,计算出测试样本与训练集中所有样本的距离,然后选择距离最近的k个邻居。最后,根据这k个邻居的标签进行投票,选择出现最频繁的标签作为预测结果。 ### 回答3: KNN(K-最近邻)是一种基本的机器学习算法,用于分类和回归问题。KNN算法的思想是基于实例的学习方法,通过计算未知样本与已知样本之间的距离来进行预测或分类。下面是一个KNN脚本代码实现的简要步骤及解释: 1. 导入所需的库和模块:在代码开头,导入所需的库和模块,例如numpy和scikit-learn等。 2. 准备数据集:准备用于训练和测试的数据集,包括特征矩阵和标签向量。可以使用scikit-learn库中的load_iris等函数加载示例数据集。 3. 定义距离度量函数:根据任务需求,定义距离度量函数,例如欧几里得距离或曼哈顿距离等。这个函数用于计算未知样本与已知样本之间的距离。 4. 实现KNN算法:编写一个函数来实现KNN算法。首先,对于每个未知样本,计算它与所有已知样本的距离。然后,选择K个最近邻样本。可以使用numpy的argsort函数对距离进行排序,选择前K个最小的距离对应的样本。最后,根据最近邻样本的标签进行预测或分类。 5. 评估算法性能:对于分类问题,可以使用分类准确率等指标来评估算法的性能。可以使用scikit-learn库中的train_test_split函数将数据集划分为训练集和测试集,然后在测试集上使用实现的KNN算法进行预测,并计算准确率。 通过以上步骤的代码实现,可以得到一个简单的KNN算法。这个算法可以根据训练集中已有的样本来对未知样本进行预测或分类。KNN算法的核心思想是通过找到K个最近邻样本来进行预测,这些样本通常具有相似的特征和标签,因此可以通过它们来预测未知样本的标签。KNN算法简单易懂,但在处理大规模数据集时计算复杂度较高,因为需要计算未知样本与所有已知样本的距离。
阅读全文

相关推荐

最新推荐

recommend-type

机器学习实战 - KNN(K近邻)算法PDF知识点详解 + 代码实现

在Python中,我们可以使用pandas库处理数据,并实现KNN算法。首先创建一个包含电影信息的DataFrame,包括电影名称、打斗镜头数、接吻镜头数和电影类型。接着,计算新电影与训练集中电影的距离,排序并选取K个最近邻...
recommend-type

基于python实现KNN分类算法

如代码所示,`normData`函数实现了数据的标准化,通过减去每列的最小值并除以最大值与最小值之差,使得数据的每个特征都在0-1之间,避免了不同特征之间量纲差异导致的影响。 2. 计算距离:KNN算法中,样本间的距离...
recommend-type

机器学习之KNN算法原理及Python实现方法详解

在这个框架中,`distEclud`函数用于计算欧氏距离,`classify0`函数执行KNN分类,包括计算距离、找到最近邻并进行投票。主程序部分则负责数据集的创建、分类以及可能的数据可视化。 KNN算法虽然简单,但在许多实际...
recommend-type

实验室管理系统 微信小程序+SSM毕业设计 源码+数据库+论文+启动教程.zip

实验室管理系统 微信小程序+SSM毕业设计 源码+数据库+论文+启动教程 项目启动教程:https://www.bilibili.com/video/BV1BfB2YYEnS
recommend-type

基于java的苹果网吧计费管理系统设计与实现.docx

基于java的苹果网吧计费管理系统设计与实现.docx
recommend-type

俄罗斯RTSD数据集实现交通标志实时检测

资源摘要信息:"实时交通标志检测" 在当今社会,随着道路网络的不断扩展和汽车数量的急剧增加,交通标志的正确识别对于驾驶安全具有极其重要的意义。为了提升自动驾驶汽车或辅助驾驶系统的性能,研究者们开发了各种算法来实现实时交通标志检测。本文将详细介绍一项关于实时交通标志检测的研究工作及其相关技术和应用。 ### 俄罗斯交通标志数据集(RTSD) 俄罗斯交通标志数据集(RTSD)是专门为训练和测试交通标志识别算法而设计的数据集。数据集内容丰富,包含了大量的带标记帧、交通符号类别、实际的物理交通标志以及符号图像。具体来看,数据集提供了以下重要信息: - 179138个带标记的帧:这些帧来源于实际的道路视频,每个帧中可能包含一个或多个交通标志,每个标志都经过了精确的标注和分类。 - 156个符号类别:涵盖了俄罗斯境内常用的各种交通标志,每个类别都有对应的图像样本。 - 15630个物理符号:这些是实际存在的交通标志实物,用于训练和验证算法的准确性。 - 104358个符号图像:这是一系列经过人工标记的交通标志图片,可以用于机器学习模型的训练。 ### 实时交通标志检测模型 在该领域中,深度学习模型尤其是卷积神经网络(CNN)已经成为实现交通标志检测的关键技术。在描述中提到了使用了yolo4-tiny模型。YOLO(You Only Look Once)是一种流行的实时目标检测系统,YOLO4-tiny是YOLO系列的一个轻量级版本,它在保持较高准确率的同时大幅度减少计算资源的需求,适合在嵌入式设备或具有计算能力限制的环境中使用。 ### YOLO4-tiny模型的特性和优势 - **实时性**:YOLO模型能够实时检测图像中的对象,处理速度远超传统的目标检测算法。 - **准确性**:尽管是轻量级模型,YOLO4-tiny在多数情况下仍能保持较高的检测准确性。 - **易集成**:适用于各种应用,包括移动设备和嵌入式系统,易于集成到不同的项目中。 - **可扩展性**:模型可以针对特定的应用场景进行微调,提高特定类别目标的检测精度。 ### 应用场景 实时交通标志检测技术的应用范围非常广泛,包括但不限于: - 自动驾驶汽车:在自动驾驶系统中,能够实时准确地识别交通标志是保证行车安全的基础。 - 智能交通系统:交通标志的实时检测可以用于交通流量监控、违规检测等。 - 辅助驾驶系统:在辅助驾驶系统中,交通标志的自动检测可以帮助驾驶员更好地遵守交通规则,提升行驶安全。 - 车辆导航系统:通过实时识别交通标志,导航系统可以提供更加精确的路线规划和预警服务。 ### 关键技术点 - **图像处理技术**:包括图像采集、预处理、增强等步骤,为后续的识别模型提供高质量的输入。 - **深度学习技术**:利用深度学习尤其是卷积神经网络(CNN)进行特征提取和模式识别。 - **数据集构建**:构建大规模、多样化的高质量数据集对于训练准确的模型至关重要。 ### 结论 本文介绍的俄罗斯交通标志数据集以及使用YOLO4-tiny模型进行实时交通标志检测的研究工作,显示了在该领域应用最新技术的可能性。随着计算机视觉技术的不断进步,实时交通标志检测算法将变得更加准确和高效,进一步推动自动驾驶和智能交通的发展。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

预测区间与置信区间:机器学习中的差异与联系

# 1. 机器学习中的统计基础 在当今数据驱动的时代,机器学习已经成为了理解大数据的关键途径。在这一章节中,我们将探索机器学习与统计学之间密不可分的关系,重点介绍统计学在机器学习中的核心地位及其应用。我们将从最基本的统计概念入手,为读者建立起机器学习中的统计基础。 ## 1.1 统计学的核心概念 统计学为我们提供了一套强大的工具,用以描述、分析以及从数据中得出结论。核心概念包括均值、方差、标准差等描述性统计指标,它们是理解数据集基本特征的关键。 ## 1.2 统计推断基础 统计推断是建立在概率论基础上的,允许我们在有限的数据样本上做出关于整体的结论。我们将解释置信区间和假设检验等基本概念
recommend-type

基于KNN通过摄像头实现0-9的识别python代码

基于KNN(K-Nearest Neighbors,最近邻算法)实现摄像头实时抓取图像并识别0-9数字的Python代码需要几个步骤,包括数据预处理、训练模型和实际应用。这里是一个简化版本的示例: ```python # 导入必要的库 import cv2 from sklearn.neighbors import KNeighborsClassifier import numpy as np # 数据预处理:假设你已经有一个包含手写数字的训练集 # 这里只是一个简化的例子,实际情况下你需要一个完整的图像数据集 # X_train (特征矩阵) 和 y_train (标签) X_train
recommend-type

易语言开发的文件批量改名工具使用Ex_Dui美化界面

资源摘要信息:"文件批量改名工具-易语言"是一个专门用于批量修改文件名的软件工具,它采用的编程语言是“易语言”,该语言是为中文用户设计的,其特点是使用中文作为编程关键字,使得中文用户能够更加容易地编写程序代码。该工具在用户界面上使用了Ex_Dui库进行美化,Ex_Dui是一个基于易语言开发的UI界面库,能够让开发的应用程序界面更美观、更具有现代感,增加了用户体验的舒适度。 【易语言知识点】: 易语言是一种简单易学的编程语言,特别适合没有编程基础的初学者。它采用了全中文的关键字和语法结构,支持面向对象的编程方式。易语言支持Windows平台的应用开发,并且可以轻松调用Windows API,实现复杂的功能。易语言的开发环境提供了丰富的组件和模块,使得开发各种应用程序变得更加高效。 【Ex_Dui知识点】: Ex_Dui是一个专为易语言设计的UI(用户界面)库,它为易语言开发的应用程序提供了大量的预制控件和风格,允许开发者快速地制作出外观漂亮、操作流畅的界面。使用Ex_Dui库可以避免编写繁琐的界面绘制代码,提高开发效率,同时使得最终的软件产品能够更加吸引用户。 【开源大赛知识点】: 2019开源大赛(第四届)是指在2019年举行的第四届开源软件开发竞赛活动。这类活动通常由开源社区或相关组织举办,旨在鼓励开发者贡献开源项目,推广开源文化和技术交流,提高软件开发的透明度和协作性。参与开源大赛的作品往往需要遵循开放源代码的许可协议,允许其他开发者自由使用、修改和分发代码。 【压缩包子文件的文件名称列表知识点】: 文件名称列表中包含了几个关键文件: - libexdui.dll:这显然是一个动态链接库文件,即DLL文件,它是由Ex_Dui库提供的,用于提供程序运行时所需的库函数和资源。DLL文件可以让程序调用相应的函数,实现特定的功能。 - 文件批量改名工具.e:这可能是易语言编写的主程序文件,带有.e扩展名,表明它是一个易语言源代码文件。 - Default.ext:这个文件名没有给出具体扩展名,可能是一个配置文件或默认设置文件,用户可以通过修改它来自定义软件的行为。 - Source:这可能是一个包含易语言源代码的目录,里面应该包含了文件批量改名工具的源代码,供开发者阅读和学习。 - Res:这个目录通常用于存放资源文件,如图形、声音等。在易语言项目中,Res目录下可能存放了程序运行所需的各种资源文件。 通过对标题、描述、标签以及文件名列表的分析,我们可以了解到这款文件批量改名工具采用了易语言编程,并且界面通过Ex_Dui库进行美化。它可能被提交到了2019年第四届开源大赛中,是开发者为用户提供的一个实用工具,用于提高处理文件时的效率。