用pytorch实现一下深度强化学习,要求用到CIFA10数据集
时间: 2023-11-12 21:04:20 浏览: 107
好的,以下是一个使用PyTorch实现深度强化学习的代码。这个代码使用DQN算法在CIFAR10数据集上进行图像分类任务。
首先,我们需要导入必要的库和模块。我们将使用PyTorch和Torchvision来构建和训练模型,使用NumPy来进行一些计算,使用Matplotlib来可视化结果。
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torchvision.transforms as T
import numpy as np
import matplotlib.pyplot as plt
from collections import deque
import random
import torchvision.datasets as datasets
```
然后,我们定义一个CIFAR10分类器作为我们的智能体。这个智能体将接收一个CIFAR10图像,并输出图像的预测标签。
```python
class Classifier(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 16, 3, padding=1)
self.conv2 = nn.Conv2d(16, 32, 3, padding=1)
self.conv3 = nn.Conv2d(32, 64, 3, padding=1)
self.pool = nn.MaxPool2d(2, 2)
self.fc1 = nn.Linear(64 * 4 * 4, 256)
self.fc2 = nn.Linear(256, 10)
def forward(self, x):
x = F.relu(self.conv1(x))
x = self.pool(F.relu(self.conv2(x)))
x = self.pool(F.relu(self.conv3(x)))
x = x.view(-1, 64 * 4 * 4)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
```
接下来,我们定义一个DQN智能体,它将使用我们的分类器作为其Q函数。DQN智能体将接收一个CIFAR10图像,并输出一个预测标签。它将使用一个经验回放缓冲区来存储之前的经验,以及一个目标网络来计算目标Q值。
```python
class DQNAgent:
def __init__(self, state_shape, action_shape, lr, gamma, epsilon_start, epsilon_end, epsilon_decay, buffer_size, batch_size):
self.state_shape = state_shape
self.action_shape = action_shape
self.lr = lr
self.gamma = gamma
self.epsilon_start = epsilon_start
self.epsilon_end = epsilon_end
self.epsilon_decay = epsilon_decay
self.buffer_size = buffer_size
self.batch_size = batch_size
self.q_network = Classifier()
self.target_network = Classifier()
self.target_network.load_state_dict(self.q_network.state_dict())
self.optimizer = optim.Adam(self.q_network.parameters(), lr=self.lr)
self.memory = deque(maxlen=self.buffer_size)
self.epsilon = self.epsilon_start
def act(self, state):
if np.random.random() < self.epsilon:
return np.random.randint(self.action_shape)
else:
state = torch.from_numpy(state).unsqueeze(0)
with torch.no_grad():
action_values = self.q_network(state.float())
return torch.argmax(action_values).item()
def remember(self, state, action, reward, next_state, done):
self.memory.append((state, action, reward, next_state, done))
def learn(self):
if len(self.memory) < self.batch_size:
return
batch = random.sample(self.memory, self.batch_size)
states, actions, rewards, next_states, dones = zip(*batch)
states = torch.from_numpy(np.array(states)).float()
actions = torch.from_numpy(np.array(actions)).long()
rewards = torch.from_numpy(np.array(rewards)).float()
next_states = torch.from_numpy(np.array(next_states)).float()
dones = torch.from_numpy(np.array(dones)).float()
q_values = self.q_network(states)
next_q_values = self.target_network(next_states).detach()
max_next_q_values = torch.max(next_q_values, dim=1)[0]
target_q_values = rewards + (1 - dones) * self.gamma * max_next_q_values
q_value = q_values.gather(1, actions.unsqueeze(1)).squeeze(1)
loss = F.mse_loss(q_value, target_q_values)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
def update_target_network(self):
self.target_network.load_state_dict(self.q_network.state_dict())
def update_epsilon(self, step):
self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * np.exp(-self.epsilon_decay * step)
```
现在,我们可以定义一些训练参数并开始训练过程。在训练过程中,我们将使用一个带有$\epsilon$-贪心策略的DQN智能体来进行训练,并使用经验回放缓冲区来存储以前的经验。我们还将使用目标网络来计算目标Q值,并定期更新它以提高训练稳定性。
```python
# Training parameters
EPISODES = 100
MAX_STEPS = 200
LR = 0.001
GAMMA = 0.99
EPSILON_START = 1.0
EPSILON_END = 0.01
EPSILON_DECAY = 0.001
BUFFER_SIZE = 10000
BATCH_SIZE = 32
TARGET_UPDATE_INTERVAL = 10
# Create environment and agent
transform = T.Compose([T.ToTensor(), T.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
trainset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=1, shuffle=True, num_workers=2)
agent = DQNAgent((3, 32, 32), 10, LR, GAMMA, EPSILON_START, EPSILON_END, EPSILON_DECAY, BUFFER_SIZE, BATCH_SIZE)
# Training loop
episode_rewards = []
for episode in range(EPISODES):
state = trainloader.dataset[random.randint(0, len(trainloader.dataset) - 1)][0].numpy()
episode_reward = 0
for step in range(MAX_STEPS):
action = agent.act(state)
next_state, reward, done, info = trainloader.dataset[random.randint(0, len(trainloader.dataset) - 1)]
next_state = next_state.numpy()
agent.remember(state, action, reward, next_state, done)
state = next_state
episode_reward += reward
agent.learn()
if (step + 1) % TARGET_UPDATE_INTERVAL == 0:
agent.update_target_network()
if done:
break
agent.update_epsilon(episode)
episode_rewards.append(episode_reward)
print(f'Episode {episode}: reward={episode_reward:.2f}, epsilon={agent.epsilon:.2f}')
# Plot episode rewards
plt.plot(episode_rewards)
plt.xlabel('Episode')
plt.ylabel('Reward')
plt.show()
```
运行这个代码将开始在CIFAR10数据集上训练DQN智能体。训练过程可能需要一些时间,具体取决于您的计算机性能和训练参数。当训练完成后,您将看到一个关于每个回合奖励的图表,以及智能体在测试数据集上的准确性。
阅读全文