用matlab画一个二元函数图像
时间: 2023-05-16 07:05:55 浏览: 248
好的,以下是用 Matlab 画一个二元函数图像的代码:
syms x y
f = x^2 + y^2;
ezsurf(f,[-5 5])
这段代码将会画出一个以 x 和 y 为自变量,以 x^2 + y^2 为因变量的三维图像。
相关问题
matlab用surf画二元分段函数的图像
可以使用surf函数画出二元分段函数的图像,具体步骤如下:
1. 定义x和y的取值范围,以及函数f(x,y)的表达式。
```matlab
x = -5:0.1:5;
y = -5:0.1:5;
[x,y] = meshgrid(x,y);
f = zeros(size(x));
f(x+y>=0) = x(x+y>=0).^2 + y(x+y>=0).^2;
f(x+y<0) = sin(x(x+y<0)).^2 + cos(y(x+y<0)).^2;
```
2. 使用surf函数画出图像。
```matlab
surf(x,y,f);
```
完整的代码如下:
```matlab
x = -5:0.1:5;
y = -5:0.1:5;
[x,y] = meshgrid(x,y);
f = zeros(size(x));
f(x+y>=0) = x(x+y>=0).^2 + y(x+y>=0).^2;
f(x+y<0) = sin(x(x+y<0)).^2 + cos(y(x+y<0)).^2;
surf(x,y,f);
```
运行代码后,就可以得到二元分段函数的图像。
matlab画二元函数图像
在 MATLAB 中,可以使用 `surf` 函数或 `mesh` 函数来画二元函数的图像。以下是一个示例:
假设要画出函数 `z = sin(x) + cos(y)` 在 `x` 和 `y` 轴范围为 `-pi` 到 `pi` 的图像。可以按照以下步骤操作:
1. 定义 `x` 和 `y` 的范围:
```
x = linspace(-pi, pi, 100); % 生成-π到π之间的100个点
y = linspace(-pi, pi, 100); % 生成-π到π之间的100个点
```
2. 生成网格数据:
```
[X,Y] = meshgrid(x,y); % 生成X和Y的网格数据
```
3. 计算函数值:
```
Z = sin(X) + cos(Y); % 计算每个网格点上的函数值
```
4. 画图:
```
surf(X,Y,Z) % 画出函数图像
```
或者使用 `mesh` 函数:
```
mesh(X,Y,Z) % 画出函数图像
```
运行以上代码即可得到二元函数的图像。
阅读全文
相关推荐















