Traceback (most recent call last): File "D:\PycharmProjects\pythonProject2\main.py", line 21, in <module> models(input) TypeError: 'module' object is not callable
时间: 2023-12-31 16:24:21 浏览: 130
这个错误提示通常是因为你正在尝试对一个模块对象进行调用,而不是模块中的某个函数、类或方法。在你的代码中,你将一个模块对象'models'作为参数传递给一个函数,而不是调用模块中的某个函数或类。因此,Python解释器无法理解你的意图,抛出了这个异常。
如果你想要使用PyTorch中的预训练模型对图像进行分类,可以使用以下代码:
```python
import torch
import torchvision
from torchvision import transforms
# 定义预处理函数
preprocess = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
# 加载数据集
dataset = torchvision.datasets.ImageFolder('D:/tupianshuju/erfenlei', transform=preprocess)
# 加载预训练的ResNet18模型
model = torchvision.models.resnet18(pretrained=True)
# 将模型设置为评估模式
model.eval()
# 将输入张量传递给模型进行前向传播
input_tensor = dataset[0][0]
input_tensor = input_tensor.unsqueeze(0)
output = model(input_tensor)
# 输出分类结果
_, predicted = torch.max(output.data, 1)
print('Predicted class index:', predicted.item())
```
在这个示例代码中,我们使用了PyTorch官方提供的ImageFolder类加载图像数据集,并使用预定义的预处理函数对图像进行预处理。然后,我们加载了预训练的ResNet18模型,并将模型设置为评估模式。最后,我们将输入张量传递给模型进行前向传播,并使用torch.max方法找到输出张量中的最大值及其对应的索引,即为预测的类别。
阅读全文