深度神经模糊随机森林python代码
时间: 2023-08-15 16:07:27 浏览: 103
### 回答1:
深度神经模糊随机森林(Deep Neural Fuzzy Random Forest,DNF-RF)是一种基于随机森林和模糊神经网络的组合模型。其Python代码如下:
1. 导入相关库
```python
import numpy as np
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
from sklearn.preprocessing import LabelEncoder
import skfuzzy as fuzz
from skfuzzy import control as ctrl
```
2. 定义DNF-RF类
```python
class DNF_RF:
def __init__(self, num_trees, num_variables, num_classes, num_fuzzy_sets):
self.num_trees = num_trees
self.num_variables = num_variables
self.num_classes = num_classes
self.num_fuzzy_sets = num_fuzzy_sets
self.trees = []
self.fuzzy_sets = []
self.classifiers = []
def fit(self, X, y):
# 训练随机森林
for i in range(self.num_trees):
tree = RandomForestClassifier(n_estimators=1, max_features=self.num_variables)
tree.fit(X, y)
self.trees.append(tree)
# 训练模糊神经网络
for i in range(self.num_classes):
fuzzy_sets = []
for j in range(self.num_variables):
fuzzy_set = ctrl.Antecedent(np.arange(X[:,j].min(), X[:,j].max()+1, 1), 'input'+str(j+1))
for k in range(self.num_fuzzy_sets):
fuzzy_set['fuzzy'+str(k+1)] = fuzz.trimf(fuzzy_set.universe, [X[:,j].min(), X[:,j].max(), (X[:,j].max()-X[:,j].min())/(self.num_fuzzy_sets-1)*k])
fuzzy_sets.append(fuzzy_set)
output = ctrl.Consequent(np.arange(self.num_classes), 'output')
for k in range(self.num_classes):
output['class'+str(k+1)] = fuzz.trimf(output.universe, [k-0.5, k, k+0.5])
rule_list = []
for m in range(self.num_fuzzy_sets):
for n in range(self.num_fuzzy_sets):
rule = []
for l in range(self.num_variables):
rule.append(fuzzy_sets[l]['fuzzy'+str(m+1)] & fuzzy_sets[l]['fuzzy'+str(n+1)])
rule_list.append(np.prod(rule))
rule_list = np.array(rule_list).reshape((self.num_fuzzy_sets**2, self.num_variables))
rule_list = rule_list / np.sum(rule_list, axis=1).reshape((self.num_fuzzy_sets**2, 1))
classifier = ctrl.ControlSystemAntecedent(rule_list)
classifier.add(output)
self.fuzzy_sets.append(fuzzy_sets)
self.classifiers.append(classifier)
def predict(self, X):
# 预测随机森林
y_pred = np.zeros((X.shape[0], self.num_trees))
for i in range(self.num_trees):
y_pred[:,i] = self.trees[i].predict(X)
y_pred_rf = np.apply_along_axis(lambda x: np.bincount(x).argmax(), axis=1, arr=y_pred)
# 预测模糊神经网络
y_pred_dnf = np.zeros((X.shape[0], self.num_classes))
for i in range(self.num_classes):
inputs = {}
for j in range(self.num_variables):
inputs['input'+str(j+1)] = X[:,j]
self.classifiers[i].evaluate(inputs=inputs, outputs=y_pred_dnf[:,i])
y_pred_dnf = np.argmax(y_pred_dnf, axis=1)
# 组合预测结果
y_pred = (y_pred_rf + y_pred_dnf) // 2
return y_pred
```
3. 使用示例
```python
# 加载数据
X = np.genfromtxt('data.csv', delimiter=',')[:,:-1]
y = np.genfromtxt('data.csv', delimiter=',', dtype=str)[:,-1]
le = LabelEncoder()
y = le.fit_transform(y)
# 训练模型
dnf_rf = DNF_RF(num_trees=10, num_variables=X.shape[1], num_classes=len(np.unique(y)), num_fuzzy_sets=3)
dnf_rf.fit(X, y)
# 预测样本
y_pred = dnf_rf.predict(X)
# 计算准确率
accuracy = accuracy_score(y, y_pred)
print('Accuracy:', accuracy)
```
### 回答2:
深度神经模糊随机森林(Deep Neural Fuzzy Random Forest,DNFRF)是一种结合了深度神经网络(Deep Neural Networks,DNN)和模糊随机森林(Fuzzy Random Forest,FRF)的算法。它能够有效地处理具有模糊性质的数据,并具备较强的分类和预测能力。
下面是一个使用Python实现DNFRF的简单示例代码:
```python
from sklearn.ensemble import RandomForestClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.metrics import accuracy_score
# 导入数据集
# X是特征向量,y是目标变量
X, y = load_dataset()
# 创建DNFRF模型
# 使用3个随机森林分类器和一个深度神经网络分类器
rf1 = RandomForestClassifier(n_estimators=100)
rf2 = RandomForestClassifier(n_estimators=100)
rf3 = RandomForestClassifier(n_estimators=100)
dnn = MLPClassifier(hidden_layer_sizes=(100,))
# 训练DNFRF模型
rf1.fit(X, y)
rf2.fit(X, y)
rf3.fit(X, y)
dnn.fit(X, y)
# 预测结果
# 将3个随机森林的预测结果和深度神经网络的预测结果加权平均
rf1_pred = rf1.predict(X)
rf2_pred = rf2.predict(X)
rf3_pred = rf3.predict(X)
dnn_pred = dnn.predict(X)
# 对权重进行归一化
weights_sum = len(rf1_pred) + len(rf2_pred) + len(rf3_pred) + len(dnn_pred)
rf1_weight = len(rf1_pred) / weights_sum
rf2_weight = len(rf2_pred) / weights_sum
rf3_weight = len(rf3_pred) / weights_sum
dnn_weight = len(dnn_pred) / weights_sum
# 对预测结果进行加权平均
ensemble_pred = rf1_weight * rf1_pred + rf2_weight * rf2_pred + rf3_weight * rf3_pred + dnn_weight * dnn_pred
# 计算准确率
accuracy = accuracy_score(y, ensemble_pred)
print("准确率为:", accuracy)
```
在这个简单的示例代码中,我们使用`sklearn`库中的`RandomForestClassifier`实现了三个随机森林分类器,以及`MLPClassifier`实现了一个深度神经网络分类器。我们使用加载好的数据集`X`和`y`进行训练和预测,并将四个模型的预测结果进行加权平均得到最终的集成预测结果。最后,使用`accuracy_score`计算得到预测结果的准确率。
需要注意的是,这只是一个简单的示例代码,实际应用中还需要进行更多的数据预处理、参数调整和模型优化等工作。
### 回答3:
深度神经模糊随机森林(Deep Neural Fuzzy Random Forest)是一种结合了神经网络和随机森林的机器学习算法。以下是一个简单的深度神经模糊随机森林的 Python 代码示例:
```python
# 导入所需库
import numpy as np
from sklearn.ensemble import RandomForestClassifier
from keras.models import Sequential
from keras.layers import Dense
# 创建深度神经模糊随机森林类
class DeepNeuralFuzzyRandomForest(object):
def __init__(self, num_trees, num_neurons):
self.num_trees = num_trees
self.num_neurons = num_neurons
self.forest = []
def fit(self, x_train, y_train):
# 创建一组随机森林
for _ in range(self.num_trees):
# 创建深度神经模糊网络模型
model = Sequential()
model.add(Dense(self.num_neurons, input_dim=x_train.shape[1], activation='relu'))
model.add(Dense(self.num_neurons, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
# 训练模型
model.fit(x_train, y_train, epochs=10, batch_size=32, verbose=0)
# 将训练好的模型添加到随机森林中
self.forest.append(model)
def predict(self, x_test):
# 对测试样本进行预测
predictions = np.zeros((x_test.shape[0],))
for model in self.forest:
pred = model.predict(x_test)
predictions += pred.flatten()
# 找到所有预测结果中的最大值,并根据阈值进行二分类
predictions /= len(self.forest)
predictions = (predictions > 0.5).astype(np.int)
return predictions
# 测试代码
# 创建随机样本数据
x_train = np.random.rand(100, 10)
y_train = np.random.randint(0, 2, size=(100,))
# 创建深度神经模糊随机森林模型
dnf_rf = DeepNeuralFuzzyRandomForest(num_trees=10, num_neurons=64)
# 拟合模型
dnf_rf.fit(x_train, y_train)
# 创建测试样本
x_test = np.random.rand(10, 10)
# 预测结果
predictions = dnf_rf.predict(x_test)
print(predictions)
```
这段代码演示了如何使用 Python 建立一个基本的深度神经模糊随机森林模型。首先,通过导入所需的库,包括 `numpy`、`sklearn` 和 `keras` 等。然后,创建一个名为 `DeepNeuralFuzzyRandomForest` 的类,其中包含模型的初始化、拟合和预测方法。在拟合方法中,使用神经网络模型对每个树进行训练,并将训练好的模型添加到随机森林中。在预测方法中,对测试样本进行预测,并根据阈值进行二分类。最后,通过创建随机样本数据、创建模型、拟合模型和预测结果等步骤对代码进行测试,并输出预测结果。
阅读全文