keras训练mnist数据集
时间: 2023-07-11 16:50:45 浏览: 160
好的,以下是使用Keras训练MNIST数据集的基本步骤:
1. 导入必要的库和模块:
```python
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
```
2. 加载MNIST数据集:
```python
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
```
3. 对数据进行预处理:
```python
# 将图像数据转化为浮点数,并将像素值缩放到[0, 1]范围内
x_train = x_train.astype("float32") / 255.0
x_test = x_test.astype("float32") / 255.0
# 将标签数据转化为one-hot编码
y_train = keras.utils.to_categorical(y_train, 10)
y_test = keras.utils.to_categorical(y_test, 10)
```
4. 定义模型结构:
```python
model = keras.Sequential(
[
layers.Flatten(input_shape=(28, 28)),
layers.Dense(128, activation="relu"),
layers.Dense(10, activation="softmax"),
]
)
```
5. 编译模型:
```python
model.compile(optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"])
```
6. 训练模型:
```python
model.fit(x_train, y_train, batch_size=32, epochs=10, validation_split=0.1)
```
7. 评估模型:
```python
test_loss, test_acc = model.evaluate(x_test, y_test)
print("Test accuracy:", test_acc)
```
这些就是使用Keras训练MNIST数据集的基本步骤,希望能对你有所帮助。
阅读全文