def compute_eer(label, pred, positive_label=1): # 打的分数 # all fpr, tpr, fnr, fnr, threshold are lists (in the format of np.array) fpr, tpr, threshold = sklearn.metrics.roc_curve(label, pred, positive_label) fnr = 1 - tpr # the threshold of fnr == fpr eer_threshold = threshold[np.nanargmin(np.absolute((fnr - fpr)))] # theoretically eer from fpr and eer from fnr should be identical but they can be slightly differ in reality eer_1 = fpr[np.nanargmin(np.absolute((fnr - fpr)))] eer_2 = fnr[np.nanargmin(np.absolute((fnr - fpr)))] # return the mean of eer from fpr and from fnr eer = (eer_1 + eer_2) / 2 return eer,eer_threshold
时间: 2024-04-21 14:26:45 浏览: 86
这是一个计算等误率(EER)的函数。它接受三个参数:真实标签(label)、模型预测值(pred)和正类标签(positive_label)。其中,label 和 pred 都是数组,positive_label 的默认值为 1。函数中使用了 scikit-learn 库的 roc_curve 函数来计算真正率(TPR)和假正率(FPR),并使用 numpy 库的函数来计算 EER 和阈值。最后,函数返回 EER 和相应的阈值。
如果你遇到了问题,请提供更多信息,我可以帮助你更好地理解和解决问题。
相关问题
Traceback (most recent call last): File "f:/VScode/pythonfile/shengwenshibie/eval_score.py", line 54, in <module> eer, eer_threshold = compute_eer(labs, scores, positive_label=1) File "f:/VScode/pythonfile/shengwenshibie/eval_score.py", line 15, in compute_eer fpr, tpr, threshold = sklearn.metrics.roc_curve(label, pred, positive_label) TypeError: roc_curve() takes 2 positional arguments but 3 were given
这个错误提示是说 `sklearn.metrics.roc_curve()` 函数只需要两个位置参数,但是你传递了三个参数。根据你提供的代码,很可能是因为 `positive_label` 这个参数的位置不正确导致的。
你可以在调用 `sklearn.metrics.roc_curve()` 函数时,将 `positive_label` 参数放在关键字参数的位置,以避免这个错误。例如:
```python
fpr, tpr, threshold = sklearn.metrics.roc_curve(label, pred, pos_label=positive_label)
```
这样,`positive_label` 参数就会被正确地识别为关键字参数,而不是位置参数,就不会出现这个错误了。
for each class class_names = np.unique(y_train) y_scores = tree.predict_proba(X_test) y_pred = tree.predict(X_test) macro_auc = roc_auc_score(y_test, y_scores, multi_class='ovo', average='macro') y_test = label_binarize(y_test, classes=range(3)) y_pred = label_binarize(y_pred, classes=range(3)) micro_auc = roc_auc_score(y_test, y_scores, average='micro') #micro_auc = roc_auc_score(y_test, y_scores, multi_class='ovr', average='micro') # calculate ROC curve fpr = dict() tpr = dict() roc_auc = dict() for i in range(3): # 遍历三个类别 fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_pred[:, i]) roc_auc[i] = auc(fpr[i], tpr[i]) return reports, matrices, micro_auc, macro_auc, fpr, tpr, roc_auc根据上述代码怎么调整下列代码fpr["micro"], tpr["micro"], _ = roc_curve(y_test.ravel(), y_pred.ravel()) roc_auc["micro"] = auc(fpr["micro"], tpr["micro"]) # Compute macro-average ROC curve and ROC area(方法一) # First aggregate all false positive rates all_fpr = np.unique(np.concatenate([fpr_avg[i] for i in range(3)])) # Then interpolate all ROC curves at this points mean_tpr = np.zeros_like(all_fpr) for i in range(3): mean_tpr += interp(all_fpr, fpr_avg[i], tpr_avg[i]) # Finally average it and compute AUC mean_tpr /= 3 fpr_avg["macro"] = all_fpr tpr_avg["macro"] = mean_tpr macro_auc_avg["macro"] = macro_auc_avg # Plot all ROC curves lw = 2 plt.figure() plt.plot(fpr_avg["micro"], tpr_avg["micro"], label='micro-average ROC curve (area = {0:0.2f})' ''.format(micro_auc_avg["micro"]), color='deeppink', linestyle=':', linewidth=4) plt.plot(fpr_avg["macro"], tpr_avg["macro"], label='macro-average ROC curve (area = {0:0.2f})' ''.format(macro_auc_avg["macro"]), color='navy', linestyle=':', linewidth=4) colors = cycle(['aqua', 'darkorange', 'cornflowerblue']) for i, color in zip(range(3), colors): plt.plot(fpr_avg[i], tpr_avg[i], color=color, lw=lw, label='ROC curve of class {0} (area = {1:0.2f})' ''.format(i, roc_auc_avg[i])) plt.plot([0, 1], [0, 1], 'k--', lw=lw) plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('DF') plt.legend(loc="lower right") plt.show()
根据上述代码,可以将下列代码进行如下调整:
```python
fpr["micro"], tpr["micro"], _ = roc_curve(y_test.ravel(), y_pred.ravel())
roc_auc["micro"] = auc(fpr["micro"], tpr["micro"])
# Compute macro-average ROC curve and ROC area
# First aggregate all false positive rates
all_fpr = np.unique(np.concatenate([fpr[i] for i in range(3)]))
# Then interpolate all ROC curves at this points
mean_tpr = np.zeros_like(all_fpr)
for i in range(3):
mean_tpr += interp(all_fpr, fpr[i], tpr[i])
# Finally average it and compute AUC
mean_tpr /= 3
fpr_avg["macro"] = all_fpr
tpr_avg["macro"] = mean_tpr
macro_auc_avg = roc_auc_score(y_test, y_scores, multi_class='ovo', average='macro')
roc_auc_avg["macro"] = macro_auc_avg
# Plot all ROC curves
lw = 2
plt.figure()
plt.plot(fpr_avg["micro"], tpr_avg["micro"], label='micro-average ROC curve (area = {0:0.2f})'
''.format(micro_auc), color='deeppink', linestyle=':', linewidth=4)
plt.plot(fpr_avg["macro"], tpr_avg["macro"], label='macro-average ROC curve (area = {0:0.2f})'
''.format(macro_auc_avg), color='navy', linestyle=':', linewidth=4)
colors = cycle(['aqua', 'darkorange', 'cornflowerblue'])
for i, color in zip(range(3), colors):
plt.plot(fpr_avg[i], tpr_avg[i], color=color, lw=lw,
label='ROC curve of class {0} (area = {1:0.2f})'.format(i, roc_auc[i]))
plt.plot([0, 1], [0, 1], 'k--', lw=lw)
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('DF')
plt.legend(loc="lower right")
plt.show()
```
首先,`macro_auc_avg` 应该是一个变量,用来存储计算得到的宏平均 ROC AUC 值,因此需要对其进行定义和赋值。其次,`roc_auc_avg` 应该是一个字典,用来存储每个类别的 ROC AUC 值,因此需要将其定义为一个空字典。在计算宏平均 ROC 曲线和 ROC AUC 值时,应该使用 `roc_auc_score` 函数来计算。最后,在绘制 ROC 曲线时,变量名应该改为 `roc_auc`,而不是 `roc_auc_avg`。
阅读全文