用python实现以下操作的点云数据的代码:1) 采用 Kd-tree 在 PV 中为所有三维点确定邻域点集 Gi= { pk} 。 2) 构建邻域协方差矩阵,采用特征值分解,计算其特征值 λ1,λ2,λ3 和对应特征向量 ξ1,ξ2,ξ3( λ1 > λ2 > λ3 ) ,ξ3 作为该点法线,计算曲率 V如下V =λ3/(λ1+ λ2+ λ3) 3) 根据曲率值 V,对所有点升序排序。按曲率顺序,依次遍历每一点,并初始化种子队列 seeds,计算每一个种子点与各自邻域点法线夹角。 4) 若种子点法线与种子点法线夹角小于阈值g( 3°) ,则将当前邻域点加入种子点 seeds,若夹角大于 g,继续其他邻域点计算。 5) 若当前种子队列均判断完毕,则输出当前平面点云 plj。 6) 遍历 PV 所有点,直到所有点均已判断完毕,见式( 3) 将 PV 分为剩余点云 Ple 、平面点云集{ plj}
时间: 2024-03-03 08:51:19 浏览: 147
以下是用Python实现以上操作的代码:
```python
import numpy as np
from sklearn.neighbors import KDTree
# 1) 在点云中为所有点确定邻域点集
def get_neighborhood_points(point_cloud, radius):
tree = KDTree(point_cloud)
neighborhood_points = []
for point in point_cloud:
_, indices = tree.query_radius([point], r=radius, return_distance=True)
neighborhood_points.append(indices[0])
return neighborhood_points
# 2) 计算曲率值
def get_curvature(point_cloud, neighborhood_points):
curvature = []
for i, point in enumerate(point_cloud):
neighbors = neighborhood_points[i]
if len(neighbors) < 4:
curvature.append(0)
continue
covariance_matrix = np.cov(point_cloud[neighbors].T)
eigenvalues, eigenvectors = np.linalg.eig(covariance_matrix)
idx = eigenvalues.argsort()[::-1]
eigenvalues = eigenvalues[idx]
eigenvectors = eigenvectors[:,idx]
curvature.append(eigenvalues[2] / np.sum(eigenvalues))
return np.array(curvature)
# 3) 根据曲率值对点云排序
def sort_point_cloud(point_cloud, curvature):
sorted_indices = np.argsort(curvature)
return point_cloud[sorted_indices]
# 4) 初始化种子队列
def get_seed_points(point_cloud, neighborhood_points, sorted_indices):
seed_points = []
visited = np.zeros(len(point_cloud))
for i in sorted_indices:
if visited[i]:
continue
seed_points.append(i)
visited[i] = 1
neighbors = neighborhood_points[i]
for neighbor in neighbors:
if visited[neighbor]:
continue
angle = np.arccos(np.dot(point_cloud[i], point_cloud[neighbor]) / (np.linalg.norm(point_cloud[i]) * np.linalg.norm(point_cloud[neighbor])))
if angle < np.deg2rad(3):
seed_points.append(neighbor)
visited[neighbor] = 1
return seed_points
# 5) 根据种子队列判断平面点云
def get_plane_point_cloud(point_cloud, neighborhood_points, seed_points):
plane_point_cloud = []
visited = np.zeros(len(point_cloud))
while seed_points:
current_seed = seed_points.pop(0)
if visited[current_seed]:
continue
plane_point_cloud.append(current_seed)
visited[current_seed] = 1
neighbors = neighborhood_points[current_seed]
for neighbor in neighbors:
if visited[neighbor]:
continue
angle = np.arccos(np.dot(point_cloud[current_seed], point_cloud[neighbor]) / (np.linalg.norm(point_cloud[current_seed]) * np.linalg.norm(point_cloud[neighbor])))
if angle < np.deg2rad(3):
seed_points.append(neighbor)
visited[neighbor] = 1
return point_cloud[plane_point_cloud]
# 6) 划分平面点云和剩余点云
def split_point_cloud(point_cloud, plane_point_cloud):
plane_indices = np.zeros(len(point_cloud))
plane_indices[plane_point_cloud] = 1
return point_cloud[~plane_indices.astype(bool)], point_cloud[plane_indices.astype(bool)]
# 示例代码
point_cloud = np.random.rand(100, 3) # 生成100个随机点的点云
neighborhood_points = get_neighborhood_points(point_cloud, 0.1) # 确定邻域点集
curvature = get_curvature(point_cloud, neighborhood_points) # 计算曲率值
sorted_point_cloud = sort_point_cloud(point_cloud, curvature) # 根据曲率值排序
seed_points = get_seed_points(point_cloud, neighborhood_points, sorted_indices) # 初始化种子队列
plane_point_cloud = get_plane_point_cloud(point_cloud, neighborhood_points, seed_points) # 判断平面点云
remaining_point_cloud, plane_point_cloud = split_point_cloud(point_cloud, plane_point_cloud) # 划分平面点云和剩余点云
```
阅读全文