class PointnetSAModuleMSG(_PointnetSAModuleBase): """Pointnet set abstraction layer with multiscale grouping""" def init(self, *, npoint: int, radii: List[float], nsamples: List[int], mlps: List[List[int]], bn: bool = True, use_xyz: bool = True, pool_method='max_pool', instance_norm=False): """ :param npoint: int :param radii: list of float, list of radii to group with :param nsamples: list of int, number of samples in each ball query :param mlps: list of list of int, spec of the pointnet before the global pooling for each scale :param bn: whether to use batchnorm :param use_xyz: :param pool_method: max_pool / avg_pool :param instance_norm: whether to use instance_norm """ super().init() assert len(radii) == len(nsamples) == len(mlps) self.npoint = npoint self.groupers = nn.ModuleList() self.mlps = nn.ModuleList() for i in range(len(radii)): radius = radii[i] nsample = nsamples[i] self.groupers.append( pointnet2_utils.QueryAndGroup(radius, nsample, use_xyz=use_xyz) if npoint is not None else pointnet2_utils.GroupAll(use_xyz) ) mlp_spec = mlps[i] if use_xyz: mlp_spec[0] += 3 self.mlps.append(pt_utils.SharedMLP(mlp_spec, bn=bn, instance_norm=instance_norm)) self.pool_method = pool_method根据以上代码,我在每一层以上模块的后面都加入了一层注意力机制层,而注意力机制层需要接收该模块的输出,所以该模块的输出是什么呢?
时间: 2023-12-03 14:02:39 浏览: 140
该模块的输出是经过多尺度聚合后的局部特征表示,具体来说,对于每个半径和采样数对,该模块会根据半径范围内的点和给定的采样数,对点云进行局部聚合,生成每个聚合的中心点的特征表示,然后将这些特征表示拼接在一起,作为该模块的输出。因此,该模块的输出是一个张量,其形状为 (B, C_out, npoint),其中 B 为 batch size,C_out 为输出通道数,npoint 为该模块输出的点数,即聚合后的中心点数。
相关问题
class PointnetSAModuleMSG(_PointnetSAModuleBase): """Pointnet set abstraction layer with multiscale grouping""" def __init__(self, *, npoint: int, radii: List[float], nsamples: List[int], mlps: List[List[int]], bn: bool = True, use_xyz: bool = True, pool_method='max_pool', instance_norm=False): """ :param npoint: int :param radii: list of float, list of radii to group with :param nsamples: list of int, number of samples in each ball query :param mlps: list of list of int, spec of the pointnet before the global pooling for each scale :param bn: whether to use batchnorm :param use_xyz: :param pool_method: max_pool / avg_pool :param instance_norm: whether to use instance_norm """ super().__init__() assert len(radii) == len(nsamples) == len(mlps) self.npoint = npoint self.groupers = nn.ModuleList() self.mlps = nn.ModuleList() for i in range(len(radii)): radius = radii[i] nsample = nsamples[i] self.groupers.append( pointnet2_utils.QueryAndGroup(radius, nsample, use_xyz=use_xyz) if npoint is not None else pointnet2_utils.GroupAll(use_xyz) ) mlp_spec = mlps[i] if use_xyz: mlp_spec[0] += 3 self.mlps.append(pt_utils.SharedMLP(mlp_spec, bn=bn, instance_norm=instance_norm)) self.pool_method = pool_method 根据以上代码,请告诉我PointnetSAModuleMSG输出张量的通道数由什么决定?
PointnetSAModuleMSG输出张量的通道数由mlps参数中的每个列表中的元素数量决定。每个列表中的元素数量指定了在每个球形区域池化之后应该应用的卷积层的数量。这些卷积层将处理每个球形区域中的点的特征,并将它们合并成一个输出特征向量。因此,输出张量的通道数将等于mlps参数中所有列表中的元素数量之和。
class PointnetSAModuleMSG(_PointnetSAModuleBase): """ Pointnet set abstraction layer with multiscale grouping and attention mechanism """ def init(self, *, npoint: int, radii: List[float], nsamples: List[int], mlps: List[List[int]], bn: bool = True, use_xyz: bool = True, pool_method='max_pool', instance_norm=False): """ :param npoint: int :param radii: list of float, list of radii to group with :param nsamples: list of int, number of samples in each ball query :param mlps: list of list of int, spec of the pointnet before the global pooling for each scale :param bn: whether to use batchnorm :param use_xyz: :param pool_method: max_pool / avg_pool :param instance_norm: whether to use instance_norm """ super().init() assert len(radii) == len(nsamples) == len(mlps) self.npoint = npoint self.groupers = nn.ModuleList() self.mlps = nn.ModuleList() # Add attention module self.attentions = nn.ModuleList() for i in range(len(radii)): radius = radii[i] nsample = nsamples[i] self.groupers.append( pointnet2_utils.QueryAndGroup(radius, nsample, use_xyz=use_xyz) if npoint is not None else pointnet2_utils.GroupAll(use_xyz) ) mlp_spec = mlps[i] if use_xyz: mlp_spec[0] += 3 # Add attention module for each scale self.attentions.append(Attention(mlp_spec[-1])) self.mlps.append(pt_utils.SharedMLP(mlp_spec, bn=bn, instance_norm=instance_norm)) self.pool_method = pool_method def forward(self, xyz, features): """ :param xyz: (B, N, 3) xyz coordinates of the points :param features: (B, N, C) input features :return: (B, npoint, mlp[-1]) tensor """ new_features_list = [] for i in range(len(self.groupers)): grouper = self.groupers[i] mlp = self.mlps[i] attention = self.attentions[i] # Group points and features grouped_xyz, grouped_features = grouper(xyz, features) # Apply MLP to each group grouped_features = mlp(grouped_features) # Apply attention mechanism to the features of each group grouped_features = attention(grouped_features) # Perform pooling over each group if self.pool_method == 'max_pool': pooled_features = torch.max(grouped_features, dim=2)[0] else: pooled_features = torch.mean(grouped_features, dim=2) new_features_list.append(pooled_features) # Concatenate features from different scales new_features = torch.cat(new_features_list, dim=1) return new_features在该类中使用的QueryAndGroup类会主动将该类所继承的父类的返回值传入QueryAndGroup类中的forward函数吗
是的,该类中使用的QueryAndGroup类会调用其继承的父类_PointnetSAModuleBase的forward函数,并将其返回值传入QueryAndGroup类中的forward函数中。具体来说,QueryAndGroup类的forward函数接收点云数据和特征数据作为输入,然后调用父类_PointnetSAModuleBase的forward函数对点云数据进行处理,得到每个点所属的局部区域以及该区域内的点的特征,最后将点的坐标和特征数据传入MLP进行处理,得到该局部区域的特征表示。这些处理结果会被QueryAndGroup类返回供_PointnetSAModuleMSG类使用。
阅读全文