解释代码: for i in range(1, tensor.shape[1]-1): vec[0][i] = tensor[0][i]-tensor[0][i-1] vec[1][i] = tensor[1][i]-tensor[1][i-1]
时间: 2023-05-25 08:04:40 浏览: 80
这段代码使用了一个for循环,循环变量i从1开始,到tensor的第二个维度的长度减1。在循环中,对vec的第一行和第二行的第i个元素进行赋值,赋值的值是tensor的第一行和第二行第i个元素减去它们的前一个元素。这个操作可以看作是对tensor每一列进行向量减法,得到的结果存储在vec的第一行和第二行中。
相关问题
Word2Vec模型代码
以下是一个简单的 Word2Vec 模型的代码示例:
```python
import numpy as np
import tensorflow as tf
from tensorflow.contrib.tensorboard.plugins import projector
# 定义参数
batch_size = 64
embedding_dimension = 5
negative_samples = 8
LOG_DIR = "logs/word2vec_intro"
# 语料
corpus_raw = 'He is the king . The king is royal . She is the royal queen '
# 数据预处理
def preprocess_text(text):
# 去除标点符号并转化为小写
text = text.lower()
text = text.replace('.', ' .')
words = text.split()
return words
words = preprocess_text(corpus_raw)
word2int = {}
int2word = {}
vocab_size = 0
# 构建vocabulary
for word in words:
if word not in word2int:
word2int[word] = vocab_size
int2word[vocab_size] = word
vocab_size += 1
# 输入和输出的占位符
x_inputs = tf.placeholder(tf.int32, shape=[batch_size])
y_inputs = tf.placeholder(tf.int32, shape=[batch_size, 1])
# 随机选择负样本
embeddings = tf.Variable(tf.random_uniform([vocab_size, embedding_dimension], -1.0, 1.0))
softmax_weights = tf.Variable(tf.truncated_normal([vocab_size, embedding_dimension], stddev=0.5 / np.sqrt(embedding_dimension)))
softmax_biases = tf.Variable(tf.zeros([vocab_size]))
embed = tf.nn.embedding_lookup(embeddings, x_inputs)
# 损失函数
loss = tf.reduce_mean(tf.nn.sampled_softmax_loss(weights=softmax_weights, biases=softmax_biases, inputs=embed, labels=y_inputs, num_sampled=negative_samples, num_classes=vocab_size))
# 优化器
optimizer = tf.train.AdagradOptimizer(0.5).minimize(loss)
# 初始化变量
init = tf.global_variables_initializer()
# 保存embedding的metadata
file_writer = tf.summary.FileWriter(LOG_DIR)
metadata = os.path.join(LOG_DIR, 'metadata.tsv')
with open(metadata, 'w') as metadata_file:
for i in range(vocab_size):
metadata_file.write('{}\n'.format(int2word[i]))
# 运行会话
with tf.Session() as sess:
# 初始化变量
sess.run(init)
total_loss = 0
writer = tf.summary.FileWriter(LOG_DIR, sess.graph)
# 训练模型
for epoch in range(1000):
batch_inputs, batch_labels = generate_batch(words, batch_size, window_size)
feed_dict = {x_inputs: batch_inputs, y_inputs: batch_labels}
# 梯度下降
_, loss_val = sess.run([optimizer, loss], feed_dict=feed_dict)
total_loss += loss_val
if epoch % 100 == 0:
print("Epoch ", epoch, "Avg loss: ", total_loss / (epoch + 1))
# 保存embedding
embedding_var = tf.Variable(embeddings, name='embedding')
sess.run(embedding_var.initializer)
config = projector.ProjectorConfig()
embedding = config.embeddings.add()
embedding.tensor_name = embedding_var.name
embedding.metadata_path = metadata
projector.visualize_embeddings(file_writer, config)
# 关闭会话
sess.close()
```
这个代码示例中使用了 TensorFlow 框架,实现了一个简单的 Word2Vec 模型。其中包括了数据预处理、构建词汇表、定义输入和输出占位符、随机选择负样本、定义损失函数、优化器等步骤。同时,为了可视化词向量,还使用了 TensorBoard 工具。
阅读全文