Scala 调用Kmean聚类的包
时间: 2024-05-14 13:16:14 浏览: 103
Scala语言实现Kmeans聚类算法(含有数据)
Scala中有多个库可以用来进行Kmean聚类操作。以下是其中一些常用库的介绍和使用方法:
1. Breeze
Breeze是一个Scala库,提供了一组基础数学库和机器学习工具。其中包括Kmeans聚类。使用Breeze进行Kmeans聚类的示例代码如下:
```scala
import breeze.linalg.{DenseMatrix, DenseVector}
import breeze.numerics.{pow, sqrt}
import breeze.stats.mean
def kMeans(data: DenseMatrix[Double], k: Int, maxIterations: Int = 100): DenseVector[Int] = {
val n = data.rows
val d = data.cols
val centers = DenseMatrix.rand(k, d)
var iteration = 0
var centroids = centers.copy
var assignment = DenseVector.zeros[Int](n)
while (iteration < maxIterations) {
// Assign points to nearest cluster
for (i <- 0 until n) {
val distances = (0 until k).map(j => sqrt(pow(data(i, ::) - centroids(j,::), 2).sum))
assignment(i) = distances.zipWithIndex.min._2
}
// Update centroids
for (j <- 0 until k) {
val points = data(assignment.findAll(_ == j), ::)
centroids(j, ::) := mean(points, Axis._0).t
}
iteration += 1
}
assignment
}
```
使用示例:
```scala
import breeze.linalg._
// Generate some random data
val data = DenseMatrix.rand(100, 2)
// Cluster data into 5 clusters
val labels = kMeans(data, 5)
```
2. Smile
Smile是一个Scala和Java的机器学习库,提供了多种聚类算法,包括Kmeans和Kmeans++。使用Smile进行Kmeans聚类的示例代码如下:
```scala
import smile.clustering._
import smile.data._
// Load data from file
val data = Read.csv("data.csv")
val x = data.toArray
// Perform Kmeans clustering with 5 clusters
val kmeans = new KMeans(x, 5)
val labels = kmeans.getClusterLabel
```
以上是两个常用的Scala库,可以用来进行Kmeans聚类操作。使用时可以根据自己的需要选择合适的库。
阅读全文