键盘上任意顺序输入15个整型数据,将数组按降序排列。在读入一个整数m ,使用折半查找方法,查找m是否在数组中,在输出其位置;不在输出“no\"。

时间: 2023-04-25 12:05:39 浏览: 27
可以使用以下代码实现: ```python # 输入15个整数 nums = list(map(int, input("请输入15个整数,用空格隔开:").split())) # 将数组按降序排列 nums.sort(reverse=True) # 输入要查找的整数 m = int(input("请输入要查找的整数:")) # 折半查找 left, right = , len(nums) - 1 while left <= right: mid = (left + right) // 2 if nums[mid] == m: print("要查找的整数在数组中的位置为:", mid) break elif nums[mid] > m: left = mid + 1 else: right = mid - 1 else: print("no") ``` 注意,折半查找要求数组已经按照降序排列。如果数组没有排好序,可以使用`sorted()`函数进行排序,例如: ```python nums = sorted(nums, reverse=True) ```
相关问题

编写应用程序将数组中的数据进行排序,然后使用折半法判断用户输入的一个整数是否在数组中用java语言

可以使用Java内置的Arrays.sort()方法对数组进行排序,然后再使用Arrays.binarySearch()方法进行折半查找。以下是示例代码: ``` import java.util.Arrays; public class SortAndBinarySearch { public static void main(String[] args) { int[] arr = {5, 2, 9, 1, 6, 3}; Arrays.sort(arr); // 对数组进行排序 int searchValue = 6; // 用户输入的整数 int index = Arrays.binarySearch(arr, searchValue); // 在排序后的数组中查找 if (index >= 0) { System.out.println(searchValue + " 在数组中的下标为 " + index); } else { System.out.println(searchValue + " 不在数组中"); } } } ``` 请注意,这只是一种实现方式,还有许多其他的排序和查找算法可以使用。

C语言输出,按降序输入若干个整数并存入一个整型数组中,对从键盘输入的数据进行查找,要求使用折半查找算法,输出查找结果,并统计本轮折半查找的次数。(要求:循环实现多个数的折半查找,输入1则继续下一个数的查找、输入其他整数则结束查找)。

以下是按照您的要求编写的 C 代码实现: ```c #include <stdio.h> int binary_search(int arr[], int n, int target, int *count) { int left = 0, right = n - 1, mid; while (left <= right) { (*count)++; mid = (left + right) / 2; if (arr[mid] == target) { return mid; } else if (arr[mid] > target) { right = mid - 1; } else { left = mid + 1; } } return -1; } int main() { int n, arr[100], target, count; printf("请输入整数个数:"); scanf("%d", &n); printf("请输入 %d 个整数:", n); for (int i = 0; i < n; i++) { scanf("%d", &arr[i]); } while (1) { printf("请输入要查找的整数(输入1继续查找,其他整数结束):"); scanf("%d", &target); if (target == 1) { count = 0; int index = binary_search(arr, n, target, &count); if (index == -1) { printf("未找到 %d\n", target); } else { printf("已找到 %d,位于数组下标 %d,折半查找次数为 %d\n", target, index, count); } } else { break; } } return 0; } ``` 代码中 `binary_search` 函数实现了折半查找算法,接受一个整型数组 `arr`,数组元素个数 `n`,目标值 `target` 和一个指向整数的指针 `count`,返回目标值在数组中的下标,若未找到则返回 -1,同时将折半查找次数写入指针 `count` 所指向的整数。`main` 函数中读入整数个数和数组元素,然后循环进行查找,每次查找时调用 `binary_search` 函数,查找到目标值时输出下标和折半查找次数。

相关推荐

### 回答1: 折半查找法也称为二分查找法,它是一种高效的查找算法。 下面是使用折半查找法在已经排好序的数组中查找特定元素的步骤: 1. 确定数组的左、右下标,初始时左下标为0,右下标为数组长度减1。 2. 计算中间位置的下标,即 (左下标 + 右下标) / 2。 3. 如果中间位置的元素等于目标值,则返回该位置的下标。 4. 如果中间位置的元素大于目标值,则目标值可能在左半部分,将右下标移动到中间位置减1。 5. 如果中间位置的元素小于目标值,则目标值可能在右半部分,将左下标移动到中间位置加1。 6. 重复步骤2到步骤5,直到左下标大于右下标,此时目标值不存在于数组中,返回-1。 因此,如果要在已经排好序的包含15个元素的数组中查找一个元素的下标,可以按照以上步骤进行操作,直到找到目标元素的下标或者确认该元素不在数组中。好的,以下是用中文回答您的问题: 这个问题可以使用折半查找法来解决。折半查找法是一种高效的查找算法,适用于已排序的数组。 具体实现方法如下: 1. 将数组按照从小到大的顺序排序。 2. 定义变量 low 和 high 分别表示数组的起始下标和结束下标。 3. 循环执行以下操作: a. 将中间位置的下标 mid 计算出来,即 mid = (low + high) // 2。 b. 如果要查找的数等于数组中下标为 mid 的数,返回 mid。 c. 如果要查找的数小于数组中下标为 mid 的数,说明要查找的数在数组的左半部分,将 high 设为 mid - 1。 d. 如果要查找的数大于数组中下标为 mid 的数,说明要查找的数在数组的右半部分,将 low 设为 mid + 1。 4. 如果循环结束时还没有找到要查找的数,说明该数不存在于数组中,返回 -1。 下面是实现该算法的 Python 代码: def binary_search(nums, target): low, high = 0, len(nums) - 1 while low <= high: mid = (low + high) // 2 if nums[mid] == target: return mid elif nums[mid] > target: high = mid - 1 else: low = mid + 1 return -1 您可以将要查找的数和数组作为函数的参数进行调用,函数将返回要查找的数在数组中的下标,如果不存在则返回 -1。 ### 回答2: 折半查找法又称二分查找法,是一种高效的查找算法,适用于有序的数组。 假设给定的数组为arr,要查找的数为num,数组中元素个数为n。则折半查找法的基本思路如下: 1. 取数组中间位置mid,比较arr[mid]和num的大小关系 2. 如果arr[mid]等于num,直接返回mid,查找成功; 3. 如果arr[mid]大于num,则在左侧数组中继续查找(由于数组已经按小到大排序,因此左侧数组的最后一个元素下标为mid-1,右侧数组的第一个元素下标为mid+1); 4. 如果arr[mid]小于num,则在右侧数组中继续查找; 5. 重复1-4步,直到找到num或者左侧数组下标大于右侧数组下标,此时查找失败。 根据上述思路,可以设计下面的算法: int binarySearch(int arr[], int n, int num) { int left = 0, right = n - 1; while(left <= right) { int mid = (left + right) / 2; if(arr[mid] == num) { return mid; } if(arr[mid] > num) { right = mid - 1; } else { left = mid + 1; } } return -1; // 查找失败,返回-1 } 其中,n为数组元素个数,left和right为数组左右边界。 假设有15个数存放在数组arr中,并已经按小到大排序,要查找的数为num,则可以直接调用binarySearch函数找到num在arr数组中的下标。 示例代码如下: #include <stdio.h> int binarySearch(int arr[], int n, int num); int main() { int arr[15] = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29}; int n = 15, num, pos; printf("请输入要查找的数:"); scanf("%d", &num); pos = binarySearch(arr, n, num); if(pos == -1) { printf("查找失败,数%d不在数组中\n", num); } else { printf("数%d在数组中的下标为%d\n", num, pos); } return 0; } int binarySearch(int arr[], int n, int num) { int left = 0, right = n - 1; while(left <= right) { int mid = (left + right) / 2; if(arr[mid] == num) { return mid; } if(arr[mid] > num) { right = mid - 1; } else { left = mid + 1; } } return -1; // 查找失败,返回-1 } ### 回答3: 折半查找,也称二分查找,是一种高效而简单的查找算法。它的基本思想是:将有序表分成两个部分,然后查找表中间位置的元素,如果该元素值与查找关键字相等,就查找成功;否则根据它与查找关键字的大小关系,确定下一步查找的区间,不断缩小区间范围,直到查找到关键字或查找区间为空为止。 按照题目中的要求,我们可以先定义一个包含15个数的数组,并将它按从小到大的顺序排好。 接着,我们可以编写一个函数实现折半查找的功能。该函数接受两个参数:要查找的数和待查找的数组。具体实现过程如下: 1. 初始化左边界 left 和右边界 right,分别为 0 和 14。 2. 如果 left > right,说明数组中没有要查找的数,返回 -1。 3. 计算中间元素的下标 mid,mid = (left + right) / 2。 4. 如果中间元素的值等于要查找的数,返回 mid。 5. 如果中间元素的值大于要查找的数,则在左半部分继续查找,将右边界缩小为 mid-1。 6. 如果中间元素的值小于要查找的数,则在右半部分继续查找,将左边界增大为 mid+1。 7. 重复执行步骤 2 - 6,直到找到要查找的数或数组为空。 最终,我们可以在主函数中调用该函数,输入要查找的数,并输出它在数组中的下标位置。 总的来说,折半查找法是一种效率较高的查找算法,可以在很短的时间内找到数组中的目标元素。但是它有一个前提条件,就是数组必须是排好序的。因此,在使用该算法时,我们必须注意先对数组进行排序。
### 回答1: 首先,我们需要先定义一个有序整型数组a,长度为10。然后,从键盘输入一个整数num,作为要查找的数。 接下来,我们可以使用折半查找法来查找num在a中的位置。具体步骤如下: 1. 定义变量left和right,分别表示查找范围的左右边界。初始时,left为0,right为a的长度减1。 2. 在while循环中,每次计算中间位置mid,如果a[mid]等于num,则返回mid。 3. 如果a[mid]大于num,则说明num在左半部分,将right更新为mid-1。 4. 如果a[mid]小于num,则说明num在右半部分,将left更新为mid+1。 5. 如果left大于right,则说明num不在a中,打印相应信息。 下面是具体的代码实现: python a = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19] # 有序整型数组a num = int(input("请输入要查找的整数:")) # 从键盘输入要查找的整数 left, right = 0, len(a) - 1 # 初始化查找范围的左右边界 while left <= right: mid = (left + right) // 2 # 计算中间位置 if a[mid] == num: # 如果找到了num,返回位置 print("要查找的整数在a中的位置为:", mid) break elif a[mid] > num: # 如果a[mid]大于num,更新right right = mid - 1 else: # 如果a[mid]小于num,更新left left = mid + 1 else: # 如果left大于right,说明num不在a中 print("要查找的整数不在a中") 运行结果如下: 请输入要查找的整数:5 要查找的整数在a中的位置为: 2 请输入要查找的整数:20 要查找的整数不在a中 ### 回答2: 本题需要使用折半查找算法思想,即将有序数组划分为两个子数组,判断目标数值在哪一个子数组中,继续不断划分直至找到目标数值。 具体编程实现有以下几个步骤: 1.定义有序整型数组a,以及目标整数input_num; 2.使用输入函数从键盘读取输入的整数input_num; 3.定义变量low和high,分别代表数组a的最小索引和最大索引; 4.进行循环操作,只要low小于等于high,就一直执行以下步骤: 4.1.计算中间位置mid,使用mid=(low+high)/2; 4.2.判断a[mid]是否等于input_num,如果相等,输出mid并结束程序; 4.3.如果a[mid]大于input_num,则在左侧子数组中继续查找,更新high=mid-1; 4.4.如果a[mid]小于input_num,则在右侧子数组中继续查找,更新low=mid+1; 5.如果整个循环结束还没有找到目标数值input_num,则输出相应信息。 完整代码实现如下: #include <stdio.h> int main() { int a[10]={1,3,5,7,9,11,13,15,17,19}; //定义有序整型数组a int input_num; //定义目标整数input_num int low=0,high=9; //定义数组a的最小索引和最大索引 printf("请输入要查找的整数:\n"); scanf("%d",&input_num); //从键盘读取输入的整数input_num while(low<=high) { int mid=(low+high)/2; //计算中间位置mid if(a[mid]==input_num) //如果相等,输出mid并结束程序 { printf("%d在数组a的位置是:%d。\n",input_num,mid); return 0; } else if(a[mid]>input_num) //如果a[mid]大于input_num,则在左侧子数组中继续查找,更新high { high=mid-1; } else //如果a[mid]小于input_num,则在右侧子数组中继续查找,更新low { low=mid+1; } } printf("对不起,没有找到%d在数组a中的位置。\n",input_num); //如果整个循环结束还没有找到目标数值input_num,则输出相应信息 return 0; } ### 回答3: 折半查找法是一种高效的搜索算法,适用于已排好序的数组。该算法是通过将待查找的元素与数组的中间元素进行比较,以确定待查找元素位于数组的左半部分还是右半部分,然后继续在相应的子数组中进行搜索,直到找到待查找元素或者确定待查找元素不存在于数组中。 针对本题,可以按照以下步骤进行编程: 1.声明一个长度为10的整型数组a,并初始化为已排序的整数。 2.从键盘输入一个整数,存入变量target中。 3.定义两个变量low和high,分别表示数组的起始位置和结束位置。初始化为a[0]和a[9]。 4.通过比较target和数组中间元素的大小关系,确定待查找元素位于左半部分还是右半部分,并将low和high更新为相应的位置。 5.在新的子数组中继续进行折半查找,直到找到待查找元素或者low>high。 6.若找到待查找元素,则打印出该元素在数组中的位置。 7.若未找到待查找元素,则打印出相应信息。 下面是代码实现: python a = [1, 3, 4, 6, 7, 10, 11, 13, 15, 18] # 声明并初始化数组a target = int(input("请输入要查找的整数:")) # 从键盘输入待查找元素 low = 0 high = 9 while low <= high: mid = (low + high) // 2 if a[mid] == target: print("要查找的整数在数组中的位置为:", mid + 1) break elif a[mid] < target: low = mid + 1 else: high = mid - 1 if low > high: print("要查找的整数不在数组中。") 上述代码中,low和high分别指向数组的第一个和最后一个元素,每次将数组折半,效率较高。若找到待查找元素,则打印出该元素在数组中的位置;若未找到,则打印出相应信息。
### 回答1: 首先,我们需要先读取从键盘输入的整数,可以使用 scanf 函数实现: c int num; scanf("%d", &num); 然后,我们需要定义一个整型一维数组 a[20],并对其进行初始化。这里我们假设数组已经初始化完成。 接下来,我们可以使用折半查找法来查找该数在数组中的位置。折半查找法的基本思想是:将数组分成两半,判断要查找的数在哪一半中,然后继续在该半中进行查找,直到找到该数或者确定该数不在数组中为止。 具体实现如下: c int low = , high = 19, mid; while (low <= high) { mid = (low + high) / 2; if (a[mid] == num) { printf("该数在数组中的位置是:%d\n", mid + 1); break; } else if (a[mid] < num) { low = mid + 1; } else { high = mid - 1; } } if (low > high) { printf("no found\n"); } 在上面的代码中,我们首先定义了三个变量:low、high 和 mid,分别表示数组的最小下标、最大下标和中间下标。然后,我们使用 while 循环进行查找,直到找到该数或者确定该数不在数组中为止。 在每次循环中,我们首先计算出中间下标 mid,然后判断要查找的数 num 是否等于 a[mid]。如果相等,说明找到了该数,输出该数在数组中的位置,并使用 break 语句跳出循环。 如果 a[mid] 小于 num,说明要查找的数在右半部分,因此将 low 更新为 mid + 1;否则,说明要查找的数在左半部分,因此将 high 更新为 mid - 1。 最后,如果 low 大于 high,说明该数不在数组中,输出“no found”。 完整代码如下: c #include <stdio.h> int main() { int a[20] = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39}; int num; scanf("%d", &num); int low = , high = 19, mid; while (low <= high) { mid = (low + high) / 2; if (a[mid] == num) { printf("该数在数组中的位置是:%d\n", mid + 1); break; } else if (a[mid] < num) { low = mid + 1; } else { high = mid - 1; } } if (low > high) { printf("no found\n"); } return ; } ### 回答2: 首先,我们需要从键盘输入一个整数。可以使用scanf()函数实现,如下所示: int num; scanf("%d", &num); 然后,我们需要定义一个整型一维数组a,大小为20,如下所示: int a[20]; 接下来,我们需要从键盘输入20个整数,将它们存储到a数组中。可以使用for循环和scanf()函数实现,如下所示: for(int i=0; i<20; i++){ scanf("%d", &a[i]); } 现在,我们已经将20个整数存储到了a数组中。接下来,我们需要使用折半查找法找出输入的整数在a数组中的位置。折半查找法是一种高效的查找算法,算法的基本思路如下所示: 1. 将数组a按照从小到大的顺序排列; 2. 通过比较中间元素和目标值,缩小查找范围; 3. 重复第2步,直到找到目标值或者查找范围缩小到0。 下面是使用折半查找法实现的代码: int left = 0; int right = 19; int mid; while(left <= right){ mid = (left + right) / 2; if(a[mid] == num){ printf("该数是数组中第%d个元素的值\n", mid+1); break; } else if(a[mid] > num){ right = mid - 1; } else{ left = mid + 1; } } if(left > right){ printf("no found\n"); } 最后,我们可以根据返回结果判断输入的整数是否在a数组中,如果在则输出该数是数组中第几个元素的值,否则打印”no found”提示信息。 ### 回答3: 折半查找法是一种高效的查找算法,也称为二分查找法,利用了有序数组的特性,不断缩小查找范围进行查找。 具体实现过程如下: 1. 从键盘输入一个整数num作为查找目标; 2. 创建一个大小为20的整型数组a,并从键盘输入20个整数存入数组中; 3. 对数组a进行排序,确保数组有序; 4. 定义变量left和right分别表示查找范围的左右边界,初值分别为0和19; 5. 当left<=right时,执行以下操作: a. 获取中间索引mid的值,mid=(left+right)/2; b. 判断a[mid]与num的大小关系,如果a[mid]==num,则表示找到了目标,返回mid; c. 如果a[mid]>num,则目标值在左半部分,将right指向mid-1; d. 如果a[mid]<num,则目标值在右半部分,将left指向mid+1; 6. 如果整个循环结束后仍未找到目标值,输出"no found"。 下面是具体的代码实现: #include <stdio.h> // 折半查找法在有序数组a中查找num,返回查找结果 int binary_search(int a[], int num, int len) { int left = 0; // 查找范围的左边界 int right = len - 1; // 查找范围的右边界 while (left <= right) { int mid = (left + right) / 2; // 计算中间位置 if (a[mid] == num) { return mid; // 找到目标值,返回索引 } else if (a[mid] > num) { right = mid - 1; // 目标值在左半部分,缩小右边界 } else { left = mid + 1; // 目标值在右半部分,扩大左边界 } } return -1; // 未找到目标值 } int main() { int a[20]; // 定义大小为20的整型数组 int num; // 待查找的目标值 int index = -1; // 查找结果 printf("请输入20个整数,以空格分隔:\n"); for (int i = 0; i < 20; i++) { scanf("%d", &a[i]); // 从键盘输入20个整数存入数组 } // 对数组a进行排序 for (int i = 0; i < 19; i++) { for (int j = 0; j < 19 - i; j++) { if (a[j] > a[j+1]) { int temp = a[j]; a[j] = a[j+1]; a[j+1] = temp; } } } printf("请输入待查找的整数:"); scanf("%d", &num); index = binary_search(a, num, 20); // 在数组a中查找num if (index == -1) { printf("no found\n"); } else { printf("%d是数组中的第%d个元素。\n", num, index + 1); } return 0; }
可以使用折半查找的方法在已排序的数组中查找输入的数。具体步骤如下: 1. 从键盘输入一个数,保存到变量中。 2. 定义两个变量left和right,分别表示数组的左右边界。初始时,left为0,right为数组长度减1。 3. 进入循环,判断left是否小于等于right。如果不成立,说明已经查找完毕,未找到该数,输出“查无此数”。 4. 计算中间位置mid,即mid=(left+right)/2。 5. 判断中间位置的数是否等于输入的数。如果相等,说明已经找到该数,输出位置mid。 6. 如果中间位置的数大于输入的数,说明要查找的数在左半部分,将right更新为mid-1。 7. 如果中间位置的数小于输入的数,说明要查找的数在右半部分,将left更新为mid+1。 8. 回到步骤3,继续查找。 下面是示例代码: python # 定义已排序的数组 arr = [10, 8, 6, 5, 4, 3, 2, 1, 0, -1] # 从键盘输入一个数 num = int(input("请输入要查找的数:")) # 定义左右边界 left = 0 right = len(arr) - 1 # 进入循环 while left <= right: # 计算中间位置 mid = (left + right) // 2 # 判断中间位置的数是否等于输入的数 if arr[mid] == num: print("位置为:", mid) break # 如果中间位置的数大于输入的数,更新右边界 elif arr[mid] > num: right = mid - 1 # 如果中间位置的数小于输入的数,更新左边界 else: left = mid + 1 else: print("查无此数") 注意,这里使用了else语句,它会在while循环正常结束时执行,即当left>right时。如果在循环中找到了该数,会执行break语句跳出循环,此时else语句不会执行。如果循环结束时仍未找到该数,会执行else语句输出“查无此数”。

最新推荐

C语言实现顺序表的顺序查找和折半查找

主要为大家详细介绍了C语言实现顺序表的顺序查找和折半查找,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

基于PHP的微信小程序商城后台管理系统源码.zip

基于PHP的微信小程序商城后台管理系统源码.zip

会议邦--企业版 产品需求说明.docx

会议邦--企业版 产品需求说明.docx

python项目实例源码 实例-08 抖音表白.zip

参考源码 欢迎下载

代码随想录最新第三版-最强八股文

这份PDF就是最强⼋股⽂! 1. C++ C++基础、C++ STL、C++泛型编程、C++11新特性、《Effective STL》 2. Java Java基础、Java内存模型、Java面向对象、Java集合体系、接口、Lambda表达式、类加载机制、内部类、代理类、Java并发、JVM、Java后端编译、Spring 3. Go defer底层原理、goroutine、select实现机制 4. 算法学习 数组、链表、回溯算法、贪心算法、动态规划、二叉树、排序算法、数据结构 5. 计算机基础 操作系统、数据库、计算机网络、设计模式、Linux、计算机系统 6. 前端学习 浏览器、JavaScript、CSS、HTML、React、VUE 7. 面经分享 字节、美团Java面、百度、京东、暑期实习...... 8. 编程常识 9. 问答精华 10.总结与经验分享 ......

基于交叉模态对应的可见-红外人脸识别及其表现评估

12046通过调整学习:基于交叉模态对应的可见-红外人脸识别Hyunjong Park*Sanghoon Lee*Junghyup Lee Bumsub Ham†延世大学电气与电子工程学院https://cvlab.yonsei.ac.kr/projects/LbA摘要我们解决的问题,可见光红外人重新识别(VI-reID),即,检索一组人的图像,由可见光或红外摄像机,在交叉模态设置。VI-reID中的两个主要挑战是跨人图像的类内变化,以及可见光和红外图像之间的跨模态假设人图像被粗略地对准,先前的方法尝试学习在不同模态上是有区别的和可概括的粗略的图像或刚性的部分级人表示然而,通常由现成的对象检测器裁剪的人物图像不一定是良好对准的,这分散了辨别性人物表示学习。在本文中,我们介绍了一种新的特征学习框架,以统一的方式解决这些问题。为此,我们建议利用密集的对应关系之间的跨模态的人的形象,年龄。这允许解决像素级中�

网上电子商城系统的数据库设计

网上电子商城系统的数据库设计需要考虑以下几个方面: 1. 用户信息管理:需要设计用户表,包括用户ID、用户名、密码、手机号、邮箱等信息。 2. 商品信息管理:需要设计商品表,包括商品ID、商品名称、商品描述、价格、库存量等信息。 3. 订单信息管理:需要设计订单表,包括订单ID、用户ID、商品ID、购买数量、订单状态等信息。 4. 购物车管理:需要设计购物车表,包括购物车ID、用户ID、商品ID、购买数量等信息。 5. 支付信息管理:需要设计支付表,包括支付ID、订单ID、支付方式、支付时间、支付金额等信息。 6. 物流信息管理:需要设计物流表,包括物流ID、订单ID、物流公司、物

数据结构1800试题.pdf

你还在苦苦寻找数据结构的题目吗?这里刚刚上传了一份数据结构共1800道试题,轻松解决期末挂科的难题。不信?你下载看看,这里是纯题目,你下载了再来私信我答案。按数据结构教材分章节,每一章节都有选择题、或有判断题、填空题、算法设计题及应用题,题型丰富多样,共五种类型题目。本学期已过去一半,相信你数据结构叶已经学得差不多了,是时候拿题来练练手了,如果你考研,更需要这份1800道题来巩固自己的基础及攻克重点难点。现在下载,不早不晚,越往后拖,越到后面,你身边的人就越卷,甚至卷得达到你无法想象的程度。我也是曾经遇到过这样的人,学习,练题,就要趁现在,不然到时你都不知道要刷数据结构题好还是高数、工数、大英,或是算法题?学完理论要及时巩固知识内容才是王道!记住!!!下载了来要答案(v:zywcv1220)。

通用跨域检索的泛化能力

12056通用跨域检索:跨类和跨域的泛化2* Soka Soka酒店,Soka-马上预订;1印度理工学院,Kharagpur,2印度科学学院,班加罗尔soumava2016@gmail.com,{titird,somabiswas} @ iisc.ac.in摘要在这项工作中,我们第一次解决了通用跨域检索的问题,其中测试数据可以属于在训练过程中看不到的类或域。由于动态增加的类别数量和对每个可能的域的训练的实际约束,这需要大量的数据,所以对看不见的类别和域的泛化是重要的。为了实现这一目标,我们提出了SnMpNet(语义Neighbourhood和混合预测网络),它包括两个新的损失,以占在测试过程中遇到的看不见的类和域。具体来说,我们引入了一种新的语义邻域损失,以弥合可见和不可见类之间的知识差距,并确保潜在的空间嵌入的不可见类是语义上有意义的,相对于其相邻的类。我们还在图像级以及数据的语义级引入了基于混�

三因素方差分析_连续变量假设检验 之 嵌套设计方差分析

嵌套设计方差分析是一种特殊的因素方差分析,用于分析一个因素(通常为被试或处理)在另一个因素(通常为场所或时间)内的变化。在嵌套设计中,因素A被嵌套在因素B的水平内,即因素B下的每个水平都有不同的A水平。例如,考虑一个实验,其中有4个医生(作为因素A)治疗了10个患者(作为因素B),每个医生治疗的患者不同,因此医生是嵌套因素。 嵌套设计方差分析的假设包括: - 常规假设:总体均值相等; - 固定效应假设:各水平下的均值相等; - 随机效应假设:各水平下的均值随机变化。 在嵌套设计方差分析中,我们需要计算三个因素:被试、场所和被试在场所内的误差。计算方法与经典的三因素方差分析类似,只是需要注