flower_list = train_dataset.class_to_idx cla_dict = dict((val, key) for key, val in flower_list.items())
时间: 2024-01-26 19:02:34 浏览: 137
这段代码用于获取训练集中的类别信息。train_dataset.class_to_idx返回一个字典,其中键为训练集中的类别名称,值为类别对应的索引。flower_list = train_dataset.class_to_idx这行代码的作用是将class_to_idx字典赋值给flower_list。
接下来的代码通过字典推导式将flower_list字典中的键值对颠倒,生成一个新的字典cla_dict。其中,键为类别对应的索引,值为训练集中的类别名称。这个字典可以方便地将模型输出的预测结果转换成对应的类别名称。
相关问题
为每句代码做注释:flower_list = train_dataset.class_to_idx cla_dict = dict((val, key) for key, val in flower_list.items()) json_str = json.dumps(cla_dict, indent=4) with open('class_indices.json', 'w') as json_file: json_file.write(json_str) batch_size = 16 nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8]) print('Using {} dataloader workers every process'.format(nw)) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=0) validate_dataset = datasets.ImageFolder(root=os.path.join(image_path, "val"), transform=data_transform["val"]) val_num = len(validate_dataset) validate_loader = torch.utils.data.DataLoader(validate_dataset, batch_size=batch_size, shuffle=False, num_workers=0) print("using {} images for training, {} images for validation.".format(train_num, val_num))
# 定义一个名为 flower_list 的变量,存储了数据集中所有类别与其对应的编号
flower_list = train_dataset.class_to_idx
# 定义一个名为 cla_dict 的变量,存储了类别与其对应的编号的键值对,并且将其反转
cla_dict = dict((val, key) for key, val in flower_list.items())
# 将 cla_dict 转换为 JSON 格式的字符串,并添加缩进
json_str = json.dumps(cla_dict, indent=4)
# 将 JSON 格式的字符串写入到名为 class_indices.json 的文件中
with open('class_indices.json', 'w') as json_file:
json_file.write(json_str)
# 定义一个名为 batch_size 的变量,表示每个批次所包含的图片数量
batch_size = 16
# 定义一个名为 nw 的变量,表示每个进程使用的数据加载器的数量,取值为 CPU 核心数量和 batch_size 中的最小值
nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8])
# 输出使用了多少个数据加载器线程
print('Using {} dataloader workers every process'.format(nw))
# 使用 train_dataset 创建一个数据加载器 train_loader,每个批次包含 batch_size 张图片,打乱顺序,使用 0 个数据加载器线程
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=0)
# 使用 validate_dataset 创建一个数据加载器 validate_loader,每个批次包含 batch_size 张图片,不打乱顺序,使用 0 个数据加载器线程
validate_dataset = datasets.ImageFolder(root=os.path.join(image_path, "val"), transform=data_transform["val"])
val_num = len(validate_dataset)
validate_loader = torch.utils.data.DataLoader(validate_dataset, batch_size=batch_size, shuffle=False, num_workers=0)
# 输出训练集和验证集中图片的数量
print("using {} images for training, {} images for validation.".format(train_num, val_num))
reg.fit(dataset_train_scaled, dataset_val_scaled)其中dataset_train_scaled, dataset_val_scaled为列表类型,paddle模型使用StackingEnsembleForecaster进行多路时序数据联合训练时报错AttributeError: 'list' object has no attribute 'target',怎么将上述列表修改为为符合StackingEnsembleForecaster模型的dict类型的列表
假设原先的 `dataset_train_scaled` 和 `dataset_val_scaled` 是一个由多个时间序列数据组成的列表,每个时间序列数据都有两列数据,一列是时间序列值,另一列是该时间序列对应的目标值,那么可以按照以下方式将其转换为符合StackingEnsembleForecaster模型要求的dict类型的列表:
```python
import pandas as pd
import numpy as np
# 假设原始数据是一个列表,每个元素都是一个pandas.DataFrame对象
dataset_train = [pd.DataFrame({'time': np.arange(10), 'value': np.random.rand(10), 'target': np.random.rand(10)}) for _ in range(5)]
dataset_val = [pd.DataFrame({'time': np.arange(10), 'value': np.random.rand(10), 'target': np.random.rand(10)}) for _ in range(5)]
# 将每个DataFrame对象转换为dict类型的对象
dataset_train_dict = [{'ts': df[['time', 'value']], 'target': df['target'], 'start': df['time'].iloc[0], 'freq': 'D'} for df in dataset_train]
dataset_val_dict = [{'ts': df[['time', 'value']], 'target': df['target'], 'start': df['time'].iloc[0], 'freq': 'D'} for df in dataset_val]
```
上面的代码将每个DataFrame对象转换为一个dict对象,并进行了适当的字段设置,包括时间序列数据、目标数据、起始时间和采样频率。这样就可以将其作为StackingEnsembleForecaster模型的输入数据了:
```python
from paddle.incubate.forecast import StackingEnsembleForecaster
reg = StackingEnsembleForecaster(estimators=[model1, model2, model3], output_dim=1)
reg.fit(dataset_train_dict, dataset_val_dict)
```
这样就可以使用StackingEnsembleForecaster模型进行多路时序数据联合训练了。注意,以上代码仅供参考,具体实现方式需要根据你的数据格式进行适当的调整。
阅读全文