扩展kalman滤波 理论结合代码

时间: 2023-05-09 14:03:22 浏览: 65
Kalman滤波器是一种用于从不完全和有误差的信息源中估计状态变量的算法。Kalman滤波器最初是为控制理论应用而设计的,后来被广泛应用于信号处理、通信、图像处理、机器人等领域。在实际应用中,Kalman滤波器的精度和效率往往会受到多种因素影响。因此,扩展kalman滤波(Extended Kalman Filter, EKF)应运而生,是推广的kalman滤波,用于处理非线性问题。 EKF的基本思想是通过将状态变量近似为非线性函数在先验值附近的线性函数的方式来处理非线性。在EKF中,状态和状态转移方程通过非线性函数表示,并且线性卡尔曼滤波中的协方差矩阵和卡尔曼增益是通过扩展卡尔曼滤波的方法获得的。 下面我们通过一个简单的例子来演示EKF的实现: 考虑一个非线性系统,其中状态变量是角度,状态转移方程为: $$x_k = x_{k-1} + cos(x_{k-1}) + v_k$$ 其中$v_k$是高斯白噪声,$v_k \sim N(0,q_k)$ 观测方程为: $$z_k = cos(x_k) + w_k$$ 其中$w_k$是高斯白噪声,$w_k \sim N(0,r_k)$ 我们可以将系统状态表示为向量$[x\ \dot{x}]^T$,状态转移矩阵如下: $$\begin{bmatrix}x_k\\ \dot{x_k}\end{bmatrix} = \begin{bmatrix}1 & \Delta t\\0 & 1 \end{bmatrix}\begin{bmatrix}x_{k-1}\\ \dot{x_{k-1}}\end{bmatrix} + \begin{bmatrix}0.5\Delta t^2\\ \Delta t\end{bmatrix}a_k$$ 其中$a_k$是加速度,$\Delta t$是采样时间间隔,可以固定或由传感器提供。 观测矩阵如下: $$\begin{bmatrix}x_k\\ \dot{x_k}\end{bmatrix} = \begin{bmatrix}1 & 0\end{bmatrix}\begin{bmatrix}x_k\\ \dot{x_k}\end{bmatrix}$$ 我们假设加速度的方差为0.2,观测噪声的方差为1,初始值为0,$x_{0} = 0$,$\dot{x_{0}} = 1$,采样时间间隔为0.1秒,采样次数为50次。 代码实现如下: 首先导入所需库: ```python import numpy as np import matplotlib.pyplot as plt ``` 定义系统参数: ```python dt = 0.1 q = 0.2 r = 1 # 状态转移矩阵 F = np.array([[1, dt],[0,1]]) # 观测矩阵 H = np.array([[1, 0]]) ``` 初始化输入、观测和状态变量: ```python # 输入加速度 a = np.ones(50) * 10 # 初始状态 x = np.array([0,1]) # 观测值 z = np.cos(x[0]) + np.random.normal(0, np.sqrt(r)) z_list = [z] # 协方差矩阵 P = np.eye(2) * 0.1 ``` 利用扩展卡尔曼滤波实现状态更新: ```python for i in range(1, len(a)): # 状态转移方程 x_ = np.dot(F, x) + np.array([0.5*dt**2, dt]) * a[i] # 状态协方差预测 P_ = np.dot(np.dot(F, P), F.T) + np.eye(2) * q # 计算雅可比矩阵 J = np.array([[-np.sin(x[0])], [0]]) # 卡尔曼增益计算 K = np.dot(np.dot(P_, J.T), np.linalg.inv(np.dot(np.dot(J, P_), J.T) + r)) # 观测更新 x = x_ + np.dot(K, (z - np.cos(x_[0]))) # 协方差更新 P = np.dot((np.eye(2) - np.dot(K, J)), P_) # 保存观测值 z = np.cos(x[0]) + np.random.normal(0, np.sqrt(r)) z_list.append(z) ``` 绘图输出结果: ```python x_list = np.array(x_list) plt.plot(x_list[:,0], x_list[:,1]) plt.title('Trajectory') plt.xlabel('Angle') plt.ylabel('Velocity') plt.show() plt.plot(x_list[:,0]) plt.plot(z_list) plt.title('Observation') plt.xlabel('Time') plt.ylabel('Angle') plt.show() ``` 通过上述代码,我们成功地构建了一个EKF滤波器,对非线性系统的状态进行了估计,并绘制了系统状态随时间变化的图像。实际应用中,EKF可扩展到多种非线性系统,并可通过更改系统参数进行适应和修正。

相关推荐

最新推荐

recommend-type

基于Camshift和Kalman滤波的自动跟踪算法

当背景中存在相似颜色干扰或者目标被严重遮挡时,采用Kalman滤波与Camshift算法相结合的改进算法进行跟踪。实验结果表明,本文改进算法在目标被严重遮挡、颜色干扰等情况下仍能有效、稳健地跟踪。
recommend-type

Kalman滤波的发散及其抑制_王坤.pdf

在对kalman滤波算法进行深入分析的基础上,对kalman滤波算法在实际应用中常出现的发散现象进行了简单的阐述,指出了产生发散的原因,并给出了几种常用的抑制发散的算法,说明了进一步研究的方向。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

list根据id查询pid 然后依次获取到所有的子节点数据

可以使用递归的方式来实现根据id查询pid并获取所有子节点数据。具体实现可以参考以下代码: ``` def get_children_nodes(nodes, parent_id): children = [] for node in nodes: if node['pid'] == parent_id: node['children'] = get_children_nodes(nodes, node['id']) children.append(node) return children # 测试数
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

未定义标识符CFileFind

CFileFind 是MFC(Microsoft Foundation Class)中的一个类,用于在Windows文件系统中搜索文件和目录。如果你在使用CFileFind时出现了“未定义标识符”的错误,可能是因为你没有包含MFC头文件或者没有链接MFC库。你可以检查一下你的代码中是否包含了以下头文件: ```cpp #include <afx.h> ``` 另外,如果你在使用Visual Studio开发,还需要在项目属性中将“使用MFC”设置为“使用MFC的共享DLL”。这样才能正确链接MFC库。