ORB如何利用高斯金字塔
时间: 2024-05-26 17:13:16 浏览: 60
ORB(Oriented FAST and Rotated BRIEF)是一种用于计算机视觉中特征点描述符的算法。ORB算法中使用高斯金字塔来实现尺度不变性。
ORB算法中,首先使用高斯滤波器对图像进行平滑处理,然后对图像进行金字塔分解。在每个金字塔层上,使用FAST(Features from Accelerated Segment Test)算法来检测关键点。FAST算法能够快速地检测出图像中的角点,因此可以用来检测关键点。
在ORB算法中,每个关键点都会计算其所在位置的BRIEF描述符。BRIEF描述符是一个二进制向量,用于描述关键点周围的图像特征。为了使ORB算法具有尺度不变性,需要在多个尺度上计算BRIEF描述符。这可以通过使用高斯金字塔来实现。在高斯金字塔中,每个层级的图像尺寸都是前一个层级图像尺寸的一半,这样就可以在不同尺度上计算BRIEF描述符。
因此,ORB算法利用高斯金字塔来实现尺度不变性,并且能够检测出图像中的关键点并计算其BRIEF描述符。
相关问题
ORB利用高斯金字塔matlab代码
以下是利用高斯金字塔实现ORB特征点提取的 Matlab 代码:
```matlab
function [keypoints, descriptors] = ORB(image)
% 将图像灰度化
gray_image = rgb2gray(image);
% 构建高斯金字塔
num_octaves = 4;
num_levels = 5;
k = sqrt(2);
sigma = 1.6;
[gauss_pyramid, dog_pyramid] = create_pyramid(gray_image, num_octaves, num_levels, k, sigma);
% 计算特征点
threshold = 0.01;
radius = 3;
[keypoints, responses] = detect_features(dog_pyramid, threshold, radius);
% 计算描述子
patch_size = 31;
descriptors = compute_descriptors(gauss_pyramid, keypoints, patch_size);
end
% 构建高斯金字塔和差分金字塔
function [gauss_pyramid, dog_pyramid] = create_pyramid(image, num_octaves, num_levels, k, sigma)
% 将图像转换成双精度类型
image = im2double(image);
% 构建高斯金字塔
gauss_pyramid = cell(num_octaves, num_levels);
% 不同octave之间的sigma值是一样的,而在同一个octave中,sigma的值是不断增加的
for i = 1:num_octaves
for j = 1:num_levels
if i == 1 && j == 1
% 第一个金字塔的第一层就是原始图像
gauss_pyramid{i, j} = image;
elseif j == 1
% 每个octave的第一层使用前一octave的最后一层下采样得到
gauss_pyramid{i, j} = imresize(gauss_pyramid{i-1, end}, 0.5, 'bilinear');
else
% 计算当前层的sigma值
sigma_curr = sigma * k^((j-2)+(i-1)*num_levels);
% 使用当前层的sigma值构建高斯滤波器
h = fspecial('gaussian', ceil(sigma_curr*3)*2+1, sigma_curr);
% 对上一层进行高斯模糊操作
gauss_pyramid{i, j} = imfilter(gauss_pyramid{i, j-1}, h, 'replicate', 'same');
end
end
end
% 构建差分金字塔
dog_pyramid = cell(num_octaves, num_levels-1);
for i = 1:num_octaves
for j = 1:num_levels-1
% 相邻两层相减得到差分金字塔
dog_pyramid{i, j} = gauss_pyramid{i, j+1} - gauss_pyramid{i, j};
end
end
end
% 计算特征点
function [keypoints, responses] = detect_features(dog_pyramid, threshold, radius)
[num_octaves, num_levels] = size(dog_pyramid);
keypoints = cell(num_octaves, num_levels-3);
responses = cell(num_octaves, num_levels-3);
for i = 1:num_octaves
for j = 2:num_levels-2
% 在当前层的3x3邻域内找到极值点
current_layer = dog_pyramid{i, j};
above_layer = dog_pyramid{i, j-1};
below_layer = dog_pyramid{i, j+1};
extrema = detect_extrema(current_layer, above_layer, below_layer, threshold, radius);
keypoints{i, j-1} = extrema;
% 计算响应值
[r, c, num_extrema] = size(extrema);
current_responses = zeros(num_extrema, 1);
for k = 1:num_extrema
current_responses(k) = compute_response(current_layer, extrema(k,1), extrema(k,2));
end
responses{i, j-1} = current_responses;
end
end
% 将所有octave中的特征点合并到一起
keypoints = cell2mat(keypoints);
responses = cell2mat(responses);
end
% 在当前层的3x3邻域内找到极值点
function extrema = detect_extrema(current_layer, above_layer, below_layer, threshold, radius)
[h, w] = size(current_layer);
extrema = [];
for i = radius+1:h-radius
for j = radius+1:w-radius
current_pixel = current_layer(i, j);
% 判断当前像素是否是3x3邻域内的极值点
if abs(current_pixel) > threshold && ...
((current_pixel > 0 && current_pixel == max(max(current_layer(i-radius:i+radius, j-radius:j+radius)))) || ...
(current_pixel < 0 && current_pixel == min(min(current_layer(i-radius:i+radius, j-radius:j+radius))))) && ...
((current_pixel > 0 && current_pixel == max(max(above_layer(i-radius:i+radius, j-radius:j+radius)))) || ...
(current_pixel < 0 && current_pixel == min(min(above_layer(i-radius:i+radius, j-radius:j+radius))))) && ...
((current_pixel > 0 && current_pixel == max(max(below_layer(i-radius:i+radius, j-radius:j+radius)))) || ...
(current_pixel < 0 && current_pixel == min(min(below_layer(i-radius:i+radius, j-radius:j+radius)))))
extrema = [extrema; i, j];
end
end
end
end
% 计算响应值
function response = compute_response(image, row, col)
% 计算像素点周围2x2邻域内的梯度值
dx = (image(row, col+1) - image(row, col-1)) / 2;
dy = (image(row+1, col) - image(row-1, col)) / 2;
% 计算Hessian矩阵
dxx = image(row, col+1) - 2*image(row, col) + image(row, col-1);
dyy = image(row+1, col) - 2*image(row, col) + image(row-1, col);
dxy = (image(row+1, col+1) - image(row+1, col-1) - image(row-1, col+1) + image(row-1, col-1)) / 4;
% 计算响应值
trace = dxx + dyy;
det = dxx * dyy - dxy * dxy;
response = det - 0.04 * trace^2;
end
% 计算描述子
function descriptors = compute_descriptors(gauss_pyramid, keypoints, patch_size)
[num_keypoints, ~] = size(keypoints);
descriptors = zeros(num_keypoints, 256);
for i = 1:num_keypoints
octave = keypoints(i, 3);
level = keypoints(i, 4);
scale = keypoints(i, 5);
row = keypoints(i, 1);
col = keypoints(i, 2);
% 计算旋转角度
angle = compute_orientation(gauss_pyramid{octave, level}, row, col, scale);
% 构建描述子
patch = get_patch(gauss_pyramid{octave, level}, row, col, scale, angle, patch_size);
descriptors(i, :) = reshape(patch, 1, []);
end
end
% 计算旋转角度
function angle = compute_orientation(image, row, col, scale)
% 计算像素点周围16x16邻域内的梯度值和方向
dx = zeros(16, 16);
dy = zeros(16, 16);
orientation = zeros(16, 16);
for i = -8:7
for j = -8:7
dx(i+9, j+9) = (image(row+i, col+j+1) - image(row+i, col+j-1)) / 2;
dy(i+9, j+9) = (image(row+i+1, col+j) - image(row+i-1, col+j)) / 2;
orientation(i+9, j+9) = atan2(dy(i+9, j+9), dx(i+9, j+9));
end
end
% 将方向分成36个bin,计算每个bin中的梯度值之和
hist = zeros(1, 36);
for i = 1:4
for j = 1:4
hist((i-1)*9+j) = sum(sum((orientation((i-1)*4+1:i*4, (j-1)*4+1:j*4) >= (j-1)*pi/18) & ...
(orientation((i-1)*4+1:i*4, (j-1)*4+1:j*4) < j*pi/18))) * ...
sum(sum((orientation((i-1)*4+1:i*4, (j-1)*4+1:j*4) >= (j-1)*pi/18) & ...
(orientation((i-1)*4+1:i*4, (j-1)*4+1:j*4) < j*pi/18)) .* ...
sqrt(dx((i-1)*4+1:i*4, (j-1)*4+1:j*4).^2 + dy((i-1)*4+1:i*4, (j-1)*4+1:j*4).^2));
end
end
% 找到最大值对应的bin,作为旋转角度
[~, max_bin] = max(hist);
angle = (max_bin-1) * pi/18;
end
% 获取patch
function patch = get_patch(image, row, col, scale, angle, patch_size)
patch = zeros(patch_size, patch_size);
for i = -patch_size/2+1:patch_size/2
for j = -patch_size/2+1:patch_size/2
x = row + i * scale * cos(angle) + j * scale * sin(angle);
y = col - i * scale * sin(angle) + j * scale * cos(angle);
patch(i+patch_size/2+1, j+patch_size/2+1) = interpolate_pixel(image, x, y);
end
end
% 归一化
patch = (patch - mean(patch(:))) / std(patch(:));
end
% 插值获取像素值
function pixel = interpolate_pixel(image, row, col)
if row < 1 || row > size(image, 1) || col < 1 || col > size(image, 2)
pixel = 0;
return
end
row1 = floor(row);
row2 = ceil(row);
col1 = floor(col);
col2 = ceil(col);
if row1 == row2 && col1 == col2
pixel = image(row1, col1);
return
end
if row1 == row2
pixel = (col2-col)*image(row1, col1) + (col-col1)*image(row1, col2);
elseif col1 == col2
pixel = (row2-row)*image(row1, col1) + (row-row1)*image(row2, col1);
else
pixel = (row2-row)*(col2-col)*image(row1, col1) + (row-row1)*(col2-col)*image(row2, col1) + ...
(row2-row)*(col-col1)*image(row1, col2) + (row-row1)*(col-col1)*image(row2, col2);
end
end
```
ORB尺度空间金字塔算法步骤
ORB(Oriented FAST and Rotated BRIEF)算法是一种用于计算机视觉中的特征提取和匹配的算法。其中ORB尺度空间金字塔(Scale Space Pyramid)是ORB算法的重要组成部分,用于检测不同尺度下的特征点。
ORB尺度空间金字塔算法步骤如下:
1. 首先,将原始图像进行多次重采样,得到一系列不同尺度的图像。
2. 对每个尺度下的图像进行高斯滤波,得到高斯金字塔。
3. 对高斯金字塔进行差分,得到高斯差分金字塔。
4. 在每个尺度下,使用FAST算法检测关键点。
5. 对于每个关键点,计算其尺度和方向,并使用BRIEF算法计算其描述子。
6. 在不同尺度下匹配关键点,得到特征点匹配。
7. 使用RANSAC算法对特征点匹配进行筛选,得到最终的稳定匹配。
以上就是ORB尺度空间金字塔算法的主要步骤。此算法可以用于图像匹配、目标跟踪等领域。
阅读全文