撰写一个cache模拟器,模拟cache不同配置下的命中率。 语言不限,C/C++/Java/Python等各种语言均可。 使用提供的trace文件进行评测。 要求能输入以下Cache配置参数对不同配置下的Cache命中率进行统计。 (1)Sizes: 1024, 2048, 4096, 8192, 16384 bytes (2)Block size: 8 bytes,16 bytes,32bytes (3)Associativities: Direct Mapped, 2-way, 4-way, 8-way (4)Replacement Policy: LRU, FIFO,Random 不用做图形化输入界面,只要能输入参数即可。 附件提供的trace.txt文件为cache访问的地址序列,每行是一个16进制的访存地址(32位的字节地址)。假设cache初始化时为空,要求模拟出访问全部地址之后总的命中率是多少。
时间: 2024-03-24 16:38:21 浏览: 91
好的,以下是一个简单的Python代码实现cache模拟器,可根据输入的配置参数模拟出cache不同配置下的命中率:
```python
import sys
def simulate_cache(cache_size, block_size, associativity, replacement_policy, trace_file):
# 计算cache的组数、块数和块大小
num_blocks = cache_size // block_size
num_sets = num_blocks // associativity
block_offset_bits = int(math.log2(block_size))
set_index_bits = int(math.log2(num_sets))
tag_bits = 32 - block_offset_bits - set_index_bits
# 初始化cache
cache = [[{'tag': -1, 'timestamp': 0} for j in range(associativity)] for i in range(num_sets)]
# 统计命中和未命中次数
num_hits = 0
num_misses = 0
# 读取trace文件
with open(trace_file, 'r') as f:
for line in f:
address = int(line.strip(), 16)
set_index = (address >> block_offset_bits) & (num_sets - 1)
tag = address >> (block_offset_bits + set_index_bits)
# 查找cache中是否有相应的块
found = False
for i in range(associativity):
if cache[set_index][i]['tag'] == tag:
num_hits += 1
found = True
# 更新时间戳
cache[set_index][i]['timestamp'] = time.time()
break
if not found:
num_misses += 1
# 查找需要替换的块
if replacement_policy == 'LRU':
min_timestamp = float('inf')
min_index = -1
for i in range(associativity):
if cache[set_index][i]['timestamp'] < min_timestamp:
min_timestamp = cache[set_index][i]['timestamp']
min_index = i
elif replacement_policy == 'FIFO':
min_timestamp = float('inf')
min_index = -1
for i in range(associativity):
if cache[set_index][i]['timestamp'] < min_timestamp:
min_timestamp = cache[set_index][i]['timestamp']
min_index = i
elif replacement_policy == 'Random':
min_index = random.randint(0, associativity - 1)
# 替换块并更新时间戳
cache[set_index][min_index]['tag'] = tag
cache[set_index][min_index]['timestamp'] = time.time()
# 计算命中率并返回
hit_rate = num_hits / (num_hits + num_misses)
return hit_rate
if __name__ == '__main__':
# 获取输入参数
cache_sizes = [1024, 2048, 4096, 8192, 16384]
block_sizes = [8, 16, 32]
associativities = [1, 2, 4, 8]
replacement_policies = ['LRU', 'FIFO', 'Random']
trace_file = 'trace.txt'
# 模拟cache不同配置下的命中率
for cache_size in cache_sizes:
for block_size in block_sizes:
for associativity in associativities:
for replacement_policy in replacement_policies:
hit_rate = simulate_cache(cache_size, block_size, associativity, replacement_policy, trace_file)
print('Cache Size:', cache_size, 'Block Size:', block_size, 'Associativity:', associativity, 'Replacement Policy:', replacement_policy, 'Hit Rate:', hit_rate)
```
该代码实现了一个基本的cache模拟器,可以根据输入的配置参数模拟出cache不同配置下的命中率。其中,simulate_cache函数接受cache的大小、块大小、关联度、替换策略和trace文件路径作为输入参数,返回模拟出的命中率。在simulate_cache函数中,首先计算出cache的组数、块数和块大小,然后初始化cache,并根据trace文件模拟出cache的访问过程,最后计算出命中率并返回。在主程序中,通过嵌套循环调用simulate_cache函数,模拟出cache不同配置下的命中率,并输出结果。
阅读全文