stm32如何通过霍尔编码器计算直流电机旋转的圈数
时间: 2023-04-07 10:01:04 浏览: 398
对于这个问题,我可以回答。STM32可以通过读取霍尔编码器的信号来计算直流电机旋转的圈数。霍尔编码器通常有三个输出信号,分别对应电机旋转的三个相位。STM32可以通过读取这三个信号的状态变化来确定电机的旋转方向和速度,并计算出电机旋转的圈数。
相关问题
帮我写关于stm32如何通过霍尔编码器计算直流电机旋转的圈数的实例代码
好的,以下是关于STM32如何通过霍尔编码器计算直流电机旋转的圈数的实例代码:
```c
#include "stm32f4xx.h"
#define HALL_A_PIN GPIO_Pin_0
#define HALL_B_PIN GPIO_Pin_1
#define HALL_C_PIN GPIO_Pin_2
#define HALL_A_PORT GPIOA
#define HALL_B_PORT GPIOA
#define HALL_C_PORT GPIOA
#define HALL_TIM TIM2
volatile uint32_t hall_count = 0;
void HALL_TIM_IRQHandler(void)
{
if (TIM_GetITStatus(HALL_TIM, TIM_IT_CC1) != RESET)
{
TIM_ClearITPendingBit(HALL_TIM, TIM_IT_CC1);
if (GPIO_ReadInputDataBit(HALL_A_PORT, HALL_A_PIN) == GPIO_ReadInputDataBit(HALL_B_PORT, HALL_B_PIN))
{
hall_count++;
}
else
{
hall_count--;
}
}
}
void HALL_Init(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
TIM_ICInitTypeDef TIM_ICInitStructure;
NVIC_InitTypeDef NVIC_InitStructure;
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE);
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);
GPIO_InitStructure.GPIO_Pin = HALL_A_PIN | HALL_B_PIN | HALL_C_PIN;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;
GPIO_Init(GPIOA, &GPIO_InitStructure);
TIM_ICInitStructure.TIM_Channel = TIM_Channel_1;
TIM_ICInitStructure.TIM_ICPolarity = TIM_ICPolarity_Rising;
TIM_ICInitStructure.TIM_ICSelection = TIM_ICSelection_DirectTI;
TIM_ICInitStructure.TIM_ICPrescaler = TIM_ICPSC_DIV1;
TIM_ICInitStructure.TIM_ICFilter = 0x0;
TIM_ICInit(HALL_TIM, &TIM_ICInitStructure);
TIM_ClearITPendingBit(HALL_TIM, TIM_IT_CC1);
TIM_ITConfig(HALL_TIM, TIM_IT_CC1, ENABLE);
NVIC_InitStructure.NVIC_IRQChannel = TIM2_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
TIM_Cmd(HALL_TIM, ENABLE);
}
int main(void)
{
HALL_Init();
while (1)
{
// do something
}
}
```
这段代码使用了STM32的TIM2定时器和GPIO模块,通过读取霍尔编码器的A、B两个信号来计算直流电机的旋转圈数。在中断处理函数中,根据A、B两个信号的状态变化来判断电机的旋转方向,并更新计数器的值。在主函数中,可以根据计数器的值来获取电机的旋转圈数。
帮我写关于stm32控制带有霍尔编码器的直流电机旋转指定圈数的代码
好的,我可以回答这个问题。以下是一个简单的示例代码,可以控制带有霍尔编码器的直流电机旋转指定圈数:
```
#include <stdio.h>
#include "stm32f4xx.h"
#define MOTOR_PIN1 GPIO_Pin_0
#define MOTOR_PIN2 GPIO_Pin_1
#define MOTOR_PIN3 GPIO_Pin_2
#define MOTOR_PIN4 GPIO_Pin_3
#define ENCODER_PIN1 GPIO_Pin_4
#define ENCODER_PIN2 GPIO_Pin_5
#define ENCODER_PIN3 GPIO_Pin_6
#define ENCODER_PPR 1000 // 每转的脉冲数
void motor_rotate(int angle);
int main(void)
{
// 初始化 GPIO 和定时器
GPIO_InitTypeDef GPIO_InitStructure;
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
TIM_OCInitTypeDef TIM_OCInitStructure;
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE);
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);
GPIO_InitStructure.GPIO_Pin = MOTOR_PIN1 | MOTOR_PIN2 | MOTOR_PIN3 | MOTOR_PIN4;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
GPIO_Init(GPIOA, &GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pin = ENCODER_PIN1 | ENCODER_PIN2 | ENCODER_PIN3;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;
GPIO_Init(GPIOA, &GPIO_InitStructure);
TIM_TimeBaseStructure.TIM_Period = 1000 - 1; // 定时器周期为 1ms
TIM_TimeBaseStructure.TIM_Prescaler = 84 - 1; // 定时器时钟频率为 84MHz
TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_Pulse = 0;
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;
TIM_OC1Init(TIM2, &TIM_OCInitStructure);
TIM_OC1PreloadConfig(TIM2, TIM_OCPreload_Enable);
// 控制电机旋转 360 度
motor_rotate(360);
while (1) {
// 等待电机旋转完成
}
}
void motor_rotate(int angle)
{
int target_count = angle * ENCODER_PPR / 360;
int current_count = 0;
// 重置编码器计数器
TIM_SetCounter(TIM2, 0);
// 控制电机旋转
GPIO_SetBits(GPIOA, MOTOR_PIN1);
GPIO_ResetBits(GPIOA, MOTOR_PIN2);
GPIO_SetBits(GPIOA, MOTOR_PIN3);
GPIO_ResetBits(GPIOA, MOTOR_PIN4);
while (current_count < target_count) {
// 等待编码器计数器达到目标值
if (GPIO_ReadInputDataBit(GPIOA, ENCODER_PIN1) == 1 &&
GPIO_ReadInputDataBit(GPIOA, ENCODER_PIN2) == 0 &&
GPIO_ReadInputDataBit(GPIOA, ENCODER_PIN3) == 1) {
current_count++;
}
}
// 停止电机旋转
GPIO_ResetBits(GPIOA, MOTOR_PIN1);
GPIO_ResetBits(GPIOA, MOTOR_PIN2);
GPIO_ResetBits(GPIOA, MOTOR_PIN3);
GPIO_ResetBits(GPIOA, MOTOR_PIN4);
}
```
这个代码使用了 STM32 的定时器和 GPIO 控制电机旋转,同时使用了霍尔编码器来检测电机旋转的角度。在 `motor_rotate` 函数中,我们计算出需要旋转的脉冲数,然后等待编码器计数器达到目标值,最后停止电机旋转。
阅读全文