卷积神经网络进行图片分类回归预测代码
时间: 2023-11-20 19:06:23 浏览: 77
以下是一个简单的卷积神经网络进行图片分类的代码示例:
```python
import tensorflow as tf
from tensorflow.keras import datasets, layers, models
# 加载数据集
(train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()
# 归一化像素值
train_images, test_images = train_images / 255.0, test_images / 255.0
# 定义模型
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10))
# 编译模型
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
# 训练模型
history = model.fit(train_images, train_labels, epochs=10,
validation_data=(test_images, test_labels))
# 评估模型
test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)
print(test_acc)
```
对于图片回归预测,可以将模型的输出改为一个浮点数或一个向量,并使用均方误差(MSE)等回归损失函数进行训练和评估。具体实现方式与分类任务类似,只需调整模型的输出层和损失函数即可。
阅读全文