#define Motor_IN1(a) (a?HAL_GPIO_WritePin(Motor_IN1_GPIO_Port,Motor_IN1_Pin,GPIO_PIN_SET):HAL_GPIO_WritePin(Motor_IN1_GPIO_Port,Motor_IN1_Pin,GPIO_PIN_RESET)) #define Motor_IN2(a) (a?HAL_GPIO_WritePin(Motor_IN2_GPIO_Port,Motor_IN2_Pin,GPIO_PIN_SET):HAL_GPIO_WritePin(Motor_IN2_GPIO_Port,Motor_IN2_Pin,GPIO_PIN_RESET)) #define Motor_IN3(a) (a?HAL_GPIO_WritePin(Motor_IN3_GPIO_Port,Motor_IN3_Pin,GPIO_PIN_SET):HAL_GPIO_WritePin(Motor_IN3_GPIO_Port,Motor_IN3_Pin,GPIO_PIN_RESET)) #define Motor_IN4(a) (a?HAL_GPIO_WritePin(Motor_IN4_GPIO_Port,Motor_IN4_Pin,GPIO_PIN_SET):HAL_GPIO_WritePin(Motor_IN4_GPIO_Port,Motor_IN4_Pin,GPIO_PIN_RESET)) #define Motor_IN5(a) (a?HAL_GPIO_WritePin(Motor_IN5_GPIO_Port,Motor_IN5_Pin,GPIO_PIN_SET):HAL_GPIO_WritePin(Motor_IN5_GPIO_Port,Motor_IN5_Pin,GPIO_PIN_RESET)) #define Motor_IN6(a) (a?HAL_GPIO_WritePin(Motor_IN6_GPIO_Port,Motor_IN6_Pin,GPIO_PIN_SET):HAL_GPIO_WritePin(Motor_IN6_GPIO_Port,Motor_IN6_Pin,GPIO_PIN_RESET)) #define Motor_IN7(a) (a?HAL_GPIO_WritePin(Motor_IN7_GPIO_Port,Motor_IN7_Pin,GPIO_PIN_SET):HAL_GPIO_WritePin(Motor_IN7_GPIO_Port,Motor_IN7_Pin,GPIO_PIN_RESET)) #define Motor_IN8(a) (a?HAL_GPIO_WritePin(Motor_IN8_GPIO_Port,Motor_IN8_Pin,GPIO_PIN_SET):HAL_GPIO_WritePin(Motor_IN8_GPIO_Port,Motor_IN8_Pin,GPIO_PIN_RESET))
时间: 2023-08-18 08:11:34 浏览: 116
这是一段宏定义,定义了一些函数,可以用来设置电机控制引脚的电平,使电机正转或反转。例如,Motor_IN1函数可以将Motor_IN1_GPIO_Port口的Motor_IN1_Pin引脚设置为高电平或低电平,以控制电机正转或反转。在函数中使用了HAL_GPIO_WritePin函数,这是HAL库中的GPIO控制函数,用来控制GPIO引脚的电平。
相关问题
stm32 hal库 水质检测代码
以下是基于STM32 HAL库的水质检测代码,你可以根据自己的需要进行修改和完善。
```c
#include "stm32f1xx_hal.h"
#define ADC_CHANNELS 3
#define ADC_TIMEOUT 10
ADC_HandleTypeDef hadc1;
DMA_HandleTypeDef hdma_adc1;
uint16_t adc_values[ADC_CHANNELS];
float temperature;
float ph_value;
float turbidity;
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_ADC1_Init(void);
int main(void)
{
HAL_Init();
SystemClock_Config();
MX_GPIO_Init();
MX_DMA_Init();
MX_ADC1_Init();
HAL_ADC_Start_DMA(&hadc1, (uint32_t*)&adc_values, ADC_CHANNELS);
while (1)
{
// 转换ADC值到测量值
temperature = (float)adc_values[0] * 3.3 / 4096 * 100;
ph_value = (float)adc_values[1] * 3.3 / 4096 * 14;
turbidity = (float)adc_values[2] * 3.3 / 4096 * 1000;
// 处理测量值
// ...
HAL_Delay(1000);
}
}
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct;
RCC_ClkInitTypeDef RCC_ClkInitStruct;
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE2);
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
Error_Handler();
}
HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/1000);
HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);
HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0);
}
static void MX_ADC1_Init(void)
{
ADC_ChannelConfTypeDef sConfig = {0};
__HAL_RCC_ADC1_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
/**ADC1 GPIO Configuration
PA0-WKUP ------> ADC1_IN0
PA1 ------> ADC1_IN1
PA2 ------> ADC1_IN2
*/
GPIO_InitTypeDef GPIO_InitStruct = {0};
GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_2;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
hadc1.Instance = ADC1;
hadc1.Init.ScanConvMode = ADC_SCAN_ENABLE;
hadc1.Init.ContinuousConvMode = ENABLE;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.NbrOfConversion = ADC_CHANNELS;
if (HAL_ADC_Init(&hadc1) != HAL_OK)
{
Error_Handler();
}
sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLETIME_239CYCLES_5;
sConfig.Channel = ADC_CHANNEL_0;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
sConfig.Rank = ADC_REGULAR_RANK_2;
sConfig.Channel = ADC_CHANNEL_1;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
sConfig.Rank = ADC_REGULAR_RANK_3;
sConfig.Channel = ADC_CHANNEL_2;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
}
static void MX_DMA_Init(void)
{
__HAL_RCC_DMA1_CLK_ENABLE();
hdma_adc1.Instance = DMA1_Channel1;
hdma_adc1.Init.Direction = DMA_PERIPH_TO_MEMORY;
hdma_adc1.Init.PeriphInc = DMA_PINC_DISABLE;
hdma_adc1.Init.MemInc = DMA_MINC_ENABLE;
hdma_adc1.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD;
hdma_adc1.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD;
hdma_adc1.Init.Mode = DMA_CIRCULAR;
hdma_adc1.Init.Priority = DMA_PRIORITY_HIGH;
if (HAL_DMA_Init(&hdma_adc1) != HAL_OK)
{
Error_Handler();
}
__HAL_LINKDMA(&hadc1, DMA_Handle, hdma_adc1);
HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn);
}
void DMA1_Channel1_IRQHandler(void)
{
HAL_DMA_IRQHandler(&hdma_adc1);
}
void Error_Handler(void) {}
#ifdef USE_FULL_ASSERT
void assert_failed(uint8_t *file, uint32_t line)
{
}
#endif
```
这个代码使用了ADC和DMA来实现水质检测。它通过ADC采集来自三个不同传感器的模拟信号,并使用DMA将它们存储到一个缓冲区中。然后,它将这些值转换为相应的测量值(温度、pH值和浊度)。你可以使用这些值进行进一步的处理和控制。
stm32蓝牙小车hal库电机代码
以下是基于STM32 HAL库的蓝牙小车电机控制代码示例。注意,此代码示例仅供参考,需要根据实际情况进行修改和优化。
```c
#include "main.h"
#include "string.h"
/* 定义电机控制引脚 */
#define IN1_Pin GPIO_PIN_0
#define IN1_GPIO_Port GPIOA
#define IN2_Pin GPIO_PIN_1
#define IN2_GPIO_Port GPIOA
#define IN3_Pin GPIO_PIN_2
#define IN3_GPIO_Port GPIOA
#define IN4_Pin GPIO_PIN_3
#define IN4_GPIO_Port GPIOA
/* 定义UART接收缓冲区大小 */
#define UART_RX_BUF_SIZE 32
/* 定义电机控制函数 */
void Motor_Control(uint8_t motor, uint8_t direction, uint8_t speed);
/* 定义UART接收回调函数 */
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart);
/* 定义UART接收缓冲区 */
uint8_t uart_rx_buf[UART_RX_BUF_SIZE];
/* 定义UART接收计数器 */
uint8_t uart_rx_count = 0;
int main(void)
{
/* 初始化HAL库 */
HAL_Init();
/* 初始化UART */
MX_USART1_UART_Init();
/* 初始化GPIO */
MX_GPIO_Init();
while (1)
{
/* 等待UART接收完成 */
HAL_UART_Receive_IT(&huart1, uart_rx_buf + uart_rx_count, 1);
}
}
void Motor_Control(uint8_t motor, uint8_t direction, uint8_t speed)
{
/* 根据电机编号设置引脚 */
switch (motor)
{
case 1:
HAL_GPIO_WritePin(IN1_GPIO_Port, IN1_Pin, direction);
HAL_GPIO_WritePin(IN2_GPIO_Port, IN2_Pin, !direction);
break;
case 2:
HAL_GPIO_WritePin(IN3_GPIO_Port, IN3_Pin, direction);
HAL_GPIO_WritePin(IN4_GPIO_Port, IN4_Pin, !direction);
break;
default:
break;
}
/* 设置PWM输出占空比 */
__HAL_TIM_SET_COMPARE(&htim2, TIM_CHANNEL_1, speed);
__HAL_TIM_SET_COMPARE(&htim2, TIM_CHANNEL_2, speed);
}
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
{
/* 如果接收到了回车符,则处理命令 */
if (uart_rx_buf[uart_rx_count] == '\r')
{
/* 根据命令控制电机 */
if (strncmp(uart_rx_buf, "M1F", 3) == 0)
{
Motor_Control(1, GPIO_PIN_SET, 100);
}
else if (strncmp(uart_rx_buf, "M1B", 3) == 0)
{
Motor_Control(1, GPIO_PIN_RESET, 100);
}
else if (strncmp(uart_rx_buf, "M2F", 3) == 0)
{
Motor_Control(2, GPIO_PIN_SET, 100);
}
else if (strncmp(uart_rx_buf, "M2B", 3) == 0)
{
Motor_Control(2, GPIO_PIN_RESET, 100);
}
/* 清空UART接收缓冲区 */
memset(uart_rx_buf, 0, UART_RX_BUF_SIZE);
uart_rx_count = 0;
}
else
{
/* 继续接收UART数据 */
uart_rx_count++;
HAL_UART_Receive_IT(&huart1, uart_rx_buf + uart_rx_count, 1);
}
}
```
需要注意的是,此代码示例仅控制了两个电机,如果需要控制更多电机,需要根据实际情况进行修改。另外,此代码示例仅支持单字节命令,如果需要支持多字节命令,需要进行相应修改。
阅读全文