def print_truth_table(self, node, text1): variables = [] i = 0 while i < len(text1): char = text1[i] if char.isalpha():#char是字母或数字 var_end = i + 1 while var_end < len(text1) and text1[var_end].isalpha(): var_end += 1 var_name = text1[i:var_end] variables.append(var_name) i = var_end else: i += 1 num_rows = 2 ** len(variables) max_var_len = max([len(var) for var in variables]) table_header = " | ".join(["{:<{}}".format(var, max_var_len) for var in variables]) + " | " + text1 print(table_header) for i in range(num_rows): data = {} binary_string = bin(i)[2:].zfill(len(variables)) for j in range(len(variables)): var = variables[j] value = int(binary_string[j]) data[var] = bool(value) result = self.evaluate_formula(node, data) row_values = [str(int(data[var])) for var in variables] + [str(int(result))] row_str = " ".join(row_values) print(row_str)

时间: 2024-02-14 15:20:14 浏览: 18
这段代码是用来实现打印逻辑表达式的真值表的,它接收两个参数,一个是逻辑表达式的树形结构,另一个是逻辑表达式的字符串表示。在函数中,首先通过解析逻辑表达式字符串获取其中的变量名,并计算需要打印的行数。然后使用字符串格式化的方式打印真值表的表头,接着使用循环构建真值表中的每一行数据,并调用 evaluate_formula 函数计算出该行数据对应的逻辑表达式的值。最后,将每一行的数据格式化成字符串并打印出来。
相关问题

def print_truth_table(self, node, text1): variables = [] i = 0 while i < len(text1): char = text1[i] if char.isalpha():#char是字母或数字 var_end = i + 1 while var_end < len(text1) and text1[var_end].isalpha(): var_end += 1 var_name = text1[i:var_end] variables.append(var_name) i = var_end else: i += 1 num_rows = 2 ** len(variables) max_var_len = max([len(var) for var in variables]) table_header = " | ".join(["{:<{}}".format(var, max_var_len) for var in variables]) + " | " + text1 print(table_header) for i in range(num_rows): data = {} binary_string = bin(i)[2:].zfill(len(variables)) for j in range(len(variables)): var = variables[j] value = int(binary_string[j]) data[var] = bool(value) result = self.evaluate_formula(node, data) row_values = [str(int(data[var])) for var in variables] + [str(int(result))] row_str = " ".join(row_values) print(row_str)逐句解释这段代码

这段代码是一个 Python 函数,名为 `print_truth_table`,接受两个参数 `node` 和 `text1`。函数的作用是打印出逻辑表达式 `text1` 的真值表。 函数首先定义了一个空列表 `variables` 和一个整数变量 `i`,然后进入一个循环,遍历 `text1` 中的每个字符。如果当前字符是字母或数字,则将其作为变量名的一部分,并将其添加到 `variables` 列表中,然后将 `i` 更新到变量名的末尾;否则,将 `i` 加一以继续遍历下一个字符。 接下来,函数计算出真值表的行数,即 $2$ 的变量数次方。然后,找到变量名中最长的那个,并将其长度保存在 `max_var_len` 变量中。接下来,使用 `max_var_len` 格式化每个变量名,生成表头,并将其与 `text1` 拼接起来。最后,使用 `print` 函数将表头打印出来。 在打印真值表的每一行之前,函数需要为每个变量生成一个布尔值,并将其存储在一个字典中。这个字典被传递给函数 `evaluate_formula`,它将计算逻辑表达式的值,并将结果存储在 `result` 变量中。接下来,将每个变量的布尔值和 `result` 转换为字符串,并将它们拼接成一个字符串 `row_str`。最后,使用 `print` 函数将 `row_str` 打印出来。 总之,这段代码的作用是计算逻辑表达式的真值表并将其打印出来,以便用户可以更好地了解表达式的行为。

打印真值表 def pttable(self, node, text1): variables = [] i = 0 while i < len(text1): char = text1[i] if char.isalpha():#char是字母或数字 var_end = i + 1 while var_end < len(text1) and text1[var_end].isalpha(): var_end += 1 var_name = text1[i:var_end] variables.append(var_name) i = var_end else: i += 1 num_rows = 2 ** len(variables) max_var_len = max([len(var) for var in variables]) table_header = " | ".join(["{:<{}}".format(var, max_var_len) for var in variables]) + " | " + text1 print(table_header) for i in range(num_rows): data = {} binary_string = bin(i)[2:].zfill(len(variables)) for j in range(len(variables)): var = variables[j] value = int(binary_string[j]) data[var] = bool(value) result = self.evaluate_formula(node, data) row_values = [str(int(data[var])) for var in variables] + [str(int(result))] row_str = " ".join(row_values) print(row_str)解释一下这段代码

这段代码是一个函数`pttable`,用于打印逻辑表达式的真值表。函数接受两个参数:`node`表示逻辑表达式的语法树节点,`text1`表示逻辑表达式的字符串表示。函数首先解析`text1`中的变量名,存入`variables`列表中。然后根据变量数目计算出真值表的行数`num_rows`,并计算出表头的字符串`table_header`,包括变量名和表达式字符串。接着依次枚举每一行,将变量的取值组成一个字典`data`,并调用`evaluate_formula`方法计算表达式的值`result`。最后将行的值转换成字符串并打印出来。整个真值表的输出格式是每行一个字符串,每列之间使用制表符分隔,行和列之间使用竖线分隔。

相关推荐

import numpy as np from platypus import NSGAII, Problem, Real, Integer # 定义问题 class JobShopProblem(Problem): def __init__(self, jobs, machines, processing_times): num_jobs = len(jobs) num_machines = len(machines[0]) super().__init__(num_jobs, 1, 1) self.jobs = jobs self.machines = machines self.processing_times = processing_times self.types[:] = Integer(0, num_jobs - 1) self.constraints[:] = [lambda x: x[0] == 1] def evaluate(self, solution): job_order = np.argsort(np.array(solution.variables[:], dtype=int)) machine_available_time = np.zeros(len(self.machines)) job_completion_time = np.zeros(len(self.jobs)) for job_idx in job_order: job = self.jobs[job_idx] for machine_idx, processing_time in zip(job, self.processing_times[job_idx]): machine_available_time[machine_idx] = max(machine_available_time[machine_idx], job_completion_time[job_idx]) job_completion_time[job_idx] = machine_available_time[machine_idx] + processing_time solution.objectives[:] = [np.max(job_completion_time)] # 定义问题参数 jobs = [[0, 1], [2, 0], [1, 2]] machines = [[0, 1, 2], [1, 2, 0], [2, 0, 1]] processing_times = [[5, 4], [3, 5], [1, 3]] # 创建算法实例 problem = JobShopProblem(jobs, machines, processing_times) algorithm = NSGAII(problem) algorithm.population_size = 100 # 设置优化目标 problem.directions[:] = Problem.MINIMIZE # 定义算法参数 algorithm.population_size = 100 max_generations = 100 mutation_probability = 0.1 # 设置算法参数 algorithm.max_iterations = max_generations algorithm.mutation_probability = mutation_probability # 运行算法 algorithm.run(max_generations) # 输出结果 print("最小化的最大完工时间:", algorithm.result[0].objectives[0]) print("工件加工顺序和机器安排方案:", algorithm.result[0].variables[:]) 请检查上述代码

class TreeNode: def __init__(self, val=None, left=None, right=None): self.val = val self.left = left self.right = right def infix_to_postfix(infix): operators = {'(': 0, ')': 0, 'NOT': 1, 'AND': 2, 'OR': 3} stack = [] postfix = [] for token in infix: if token in operators: if token == '(': stack.append(token) elif token == ')': while stack[-1] != '(': postfix.append(stack.pop()) stack.pop() else: while stack and operators[stack[-1]] >= operators[token]: postfix.append(stack.pop()) stack.append(token) else: postfix.append(token) while stack: postfix.append(stack.pop()) return postfix def postfix_to_tree(postfix): stack = [] for token in postfix: if token in {'NOT', 'AND', 'OR'}: right = stack.pop() if token == 'NOT': stack.append(TreeNode('NOT', None, right)) else: left = stack.pop() stack.append(TreeNode(token, left, right)) else: stack.append(TreeNode(token)) return stack.pop() def evaluate(root, values): if root.val in values: return values[root.val] elif root.val == 'NOT': return not evaluate(root.right, values) elif root.val == 'AND': return evaluate(root.left, values) and evaluate(root.right, values) elif root.val == 'OR': return evaluate(root.left, values) or evaluate(root.right, values) def print_tree(root, level=0): if root: print_tree(root.right, level + 1) print(' ' * 4 * level + '->', root.val) print_tree(root.left, level + 1) infix = input('请输入命题演算公式:').split() postfix = infix_to_postfix(infix) root = postfix_to_tree(postfix) print('后缀表达式:', postfix) print('二叉树构造过程:') print_tree(root) print('真值表:') variables = list(set(filter(lambda x: x not in {'NOT', 'AND', 'OR'}, infix))) for values in itertools.product([True, False], repeat=len(variables)): values = dict(zip(variables, values)) result = evaluate(root, values) print(values, '->', result)其中有错误NameError: name 'itertools' is not defined。请修改

根据以下代码:class Node: def init(self, value): self.value = value self.left = None self.right = None def is_operator(c): return c in ['&', '|', '!'] def infix_to_postfix(infix): precedence = {'!': 3, '&': 2, '|': 1, '(': 0} stack = [] postfix = [] for c in infix: if c.isalpha(): postfix.append(c) elif c == '(': stack.append(c) elif c == ')': while stack and stack[-1] != '(': postfix.append(stack.pop()) stack.pop() elif is_operator(c): while stack and precedence[c] <= precedence.get(stack[-1], 0): postfix.append(stack.pop()) stack.append(c) while stack: postfix.append(stack.pop()) return postfix def build_tree(postfix): stack = [] for c in postfix: if c.isalpha(): node = Node(c) stack.append(node) elif is_operator(c): node = Node(c) node.right = stack.pop() node.left = stack.pop() stack.append(node) return stack[-1] def evaluate(node, values): if node.value.isalpha(): return values[node.value] elif node.value == '!': return not evaluate(node.right, values) elif node.value == '&': return evaluate(node.left, values) and evaluate(node.right, values) elif node.value == '|': return evaluate(node.left, values) or evaluate(node.right, values) def calculate(formula, values): postfix = infix_to_postfix(formula) tree = build_tree(postfix) return evaluate(tree, values) 在该代码基础上,使用python语言,以菜单形式完成下面几个的输出:1.打印二叉树的构造过程;2.打印公式的后缀形式;3.二叉树的后序遍历序列;4.输入每个变量的值,计算并显示公式的真值,打印二叉树的评估过程;5.显示公式的真值表

优化这段代码:def calTravelCost(route_list,model): timetable_list=[] distance_of_routes=0 time_of_routes=0 obj=0 for route in route_list: timetable=[] vehicle=model.vehicle_dict[route[0]] travel_distance=0 travel_time=0 v_type = route[0] free_speed=vehicle.free_speed fixed_cost=vehicle.fixed_cost variable_cost=vehicle.variable_cost for i in range(len(route)): if i == 0: next_node_id=route[i+1] travel_time_between_nodes=model.distance_matrix[v_type,next_node_id]/free_speed departure=max(0,model.demand_dict[next_node_id].start_time-travel_time_between_nodes) timetable.append((int(departure),int(departure))) elif 1<= i <= len(route)-2: last_node_id=route[i-1] current_node_id=route[i] current_node = model.demand_dict[current_node_id] travel_time_between_nodes=model.distance_matrix[last_node_id,current_node_id]/free_speed arrival=max(timetable[-1][1]+travel_time_between_nodes,current_node.start_time) departure=arrival+current_node.service_time timetable.append((int(arrival),int(departure))) travel_distance += model.distance_matrix[last_node_id, current_node_id] travel_time += model.distance_matrix[last_node_id, current_node_id]/free_speed+\ + max(current_node.start_time - arrival, 0) else: last_node_id = route[i - 1] travel_time_between_nodes = model.distance_matrix[last_node_id,v_type]/free_speed departure = timetable[-1][1]+travel_time_between_nodes timetable.append((int(departure),int(departure))) travel_distance += model.distance_matrix[last_node_id,v_type] travel_time += model.distance_matrix[last_node_id,v_type]/free_speed distance_of_routes+=travel_distance time_of_routes+=travel_time if model.opt_type==0: obj+=fixed_cost+travel_distance*variable_cost else: obj += fixed_cost + travel_time *variable_cost timetable_list.append(timetable) return timetable_list,time_of_routes,distance_of_routes,obj

最新推荐

recommend-type

关于Windows 9x的vmm32问题解决方法

关于Windows 9x的vmm32问题解决方法
recommend-type

保险服务门店新年工作计划PPT.pptx

在保险服务门店新年工作计划PPT中,包含了五个核心模块:市场调研与目标设定、服务策略制定、营销与推广策略、门店形象与环境优化以及服务质量监控与提升。以下是每个模块的关键知识点: 1. **市场调研与目标设定** - **了解市场**:通过收集和分析当地保险市场的数据,包括产品种类、价格、市场需求趋势等,以便准确把握市场动态。 - **竞争对手分析**:研究竞争对手的产品特性、优势和劣势,以及市场份额,以进行精准定位和制定有针对性的竞争策略。 - **目标客户群体定义**:根据市场需求和竞争情况,明确服务对象,设定明确的服务目标,如销售额和客户满意度指标。 2. **服务策略制定** - **服务计划制定**:基于市场需求定制服务内容,如咨询、报价、理赔协助等,并规划服务时间表,保证服务流程的有序执行。 - **员工素质提升**:通过专业培训提升员工业务能力和服务意识,优化服务流程,提高服务效率。 - **服务环节管理**:细化服务流程,明确责任,确保服务质量和效率,强化各环节之间的衔接。 3. **营销与推广策略** - **节日营销活动**:根据节庆制定吸引人的活动方案,如新春送福、夏日促销,增加销售机会。 - **会员营销**:针对会员客户实施积分兑换、优惠券等策略,增强客户忠诚度。 4. **门店形象与环境优化** - **环境设计**:优化门店外观和内部布局,营造舒适、专业的服务氛围。 - **客户服务便利性**:简化服务手续和所需材料,提升客户的体验感。 5. **服务质量监控与提升** - **定期评估**:持续监控服务质量,发现问题后及时调整和改进,确保服务质量的持续提升。 - **流程改进**:根据评估结果不断优化服务流程,减少等待时间,提高客户满意度。 这份PPT旨在帮助保险服务门店在新的一年里制定出有针对性的工作计划,通过科学的策略和细致的执行,实现业绩增长和客户满意度的双重提升。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB图像去噪最佳实践总结:经验分享与实用建议,提升去噪效果

![MATLAB图像去噪最佳实践总结:经验分享与实用建议,提升去噪效果](https://img-blog.csdnimg.cn/d3bd9b393741416db31ac80314e6292a.png) # 1. 图像去噪基础 图像去噪旨在从图像中去除噪声,提升图像质量。图像噪声通常由传感器、传输或处理过程中的干扰引起。了解图像噪声的类型和特性对于选择合适的去噪算法至关重要。 **1.1 噪声类型** * **高斯噪声:**具有正态分布的加性噪声,通常由传感器热噪声引起。 * **椒盐噪声:**随机分布的孤立像素,值要么为最大值(白色噪声),要么为最小值(黑色噪声)。 * **脉冲噪声
recommend-type

InputStream in = Resources.getResourceAsStream

`Resources.getResourceAsStream`是MyBatis框架中的一个方法,用于获取资源文件的输入流。它通常用于加载MyBatis配置文件或映射文件。 以下是一个示例代码,演示如何使用`Resources.getResourceAsStream`方法获取资源文件的输入流: ```java import org.apache.ibatis.io.Resources; import java.io.InputStream; public class Example { public static void main(String[] args) {
recommend-type

车辆安全工作计划PPT.pptx

"车辆安全工作计划PPT.pptx" 这篇文档主要围绕车辆安全工作计划展开,涵盖了多个关键领域,旨在提升车辆安全性能,降低交通事故发生率,以及加强驾驶员的安全教育和交通设施的完善。 首先,工作目标是确保车辆结构安全。这涉及到车辆设计和材料选择,以增强车辆的结构强度和耐久性,从而减少因结构问题导致的损坏和事故。同时,通过采用先进的电子控制和安全技术,提升车辆的主动和被动安全性能,例如防抱死刹车系统(ABS)、电子稳定程序(ESP)等,可以显著提高行驶安全性。 其次,工作内容强调了建立和完善车辆安全管理体系。这包括制定车辆安全管理制度,明确各级安全管理责任,以及确立安全管理的指导思想和基本原则。同时,需要建立安全管理体系,涵盖安全组织、安全制度、安全培训和安全检查等,确保安全管理工作的系统性和规范性。 再者,加强驾驶员安全培训是另一项重要任务。通过培训提高驾驶员的安全意识和技能水平,使他们更加重视安全行车,了解并遵守交通规则。培训内容不仅包括交通法规,还涉及安全驾驶技能和应急处置能力,以应对可能发生的突发情况。 此外,文档还提到了严格遵守交通规则的重要性。这需要通过宣传和执法来强化,以降低由于违反交通规则造成的交通事故。同时,优化道路交通设施,如改善交通标志、标线和信号灯,可以提高道路通行效率,进一步增强道路安全性。 在实际操作层面,工作计划中提到了车辆定期检查的必要性,包括对刹车、转向、悬挂、灯光、燃油和电器系统的检查,以及根据车辆使用情况制定检查计划。每次检查后应记录问题并及时处理,以确保车辆始终处于良好状态。 最后,建立车辆安全信息管理系统也是关键。通过对车辆事故和故障情况进行记录和分析,可以为安全管理提供数据支持,以便及时发现问题,预防潜在风险,并对事故进行有效处理和责任追究。 这份车辆安全工作计划全面覆盖了从车辆本身到驾驶员行为,再到道路环境的诸多方面,旨在构建一个全方位、多层次的车辆安全管理体系,以降低交通事故风险,保障道路交通安全。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB图像去噪行业应用:从医疗到遥感,解锁图像去噪的无限潜力

![MATLAB图像去噪行业应用:从医疗到遥感,解锁图像去噪的无限潜力](https://img-blog.csdnimg.cn/img_convert/3aa5d0402a313c17c3c9ffa85b40f683.png) # 1. MATLAB图像去噪概述 **1.1 图像去噪的重要性** 图像去噪是图像处理中一项至关重要的任务,它旨在从图像中去除不需要的噪声,从而提高图像的质量和可理解性。图像噪声可能来自各种来源,如传感器缺陷、环境干扰和数据传输错误。 **1.2 MATLAB图像去噪的优势** MATLAB是一个强大的技术计算环境,提供了一系列图像去噪算法和工具。MATLA
recommend-type

使用pyrhon编写mapreduce

MapReduce是一种用于处理大规模数据集的编程模型和算法。它通常用于分布式计算环境中,可以高效地处理大量数据并实现并行计算。在Python中,我们可以使用Hadoop Streaming来编写MapReduce程序。 下面是使用Python编写MapReduce的基本步骤: 1. Map阶段: - 编写一个mapper函数,该函数接收输入数据并将其转换为键值对的形式。 - 使用标准输入(sys.stdin)读取输入数据,并使用标准输出(sys.stdout)输出键值对。 2. Reduce阶段: - 编写一个reducer函数,该函数接收来自mapper函数输出的键
recommend-type

ipqc工作总结PPT.pptx

"这是一份关于IPQC(在制品质量控制)的工作总结PPT,涵盖了IPQC的角色定义、工作总结、质量月报、质量提升计划、团队发展计划以及未来展望。" IPQC,全称为InProcess Quality Control,在制品质量控制,是制造过程中至关重要的一个环节。IPQC的主要职责在于通过抽检和检验在制品,确保生产出的产品符合预设的质量标准和客户期望。他们的工作包括但不限于: 1. **质量检验与控制**:对在制品进行定期抽样检验,以确认产品质量是否达标。 2. **环境与设备监控**:检查生产现场的环境条件和设备运行状态,确保符合生产要求。 3. **关键控制点检查**:在生产的关键阶段进行严格检查,及时发现问题。 4. **不合格品管理**:对不合格品进行标识、隔离,并追踪问题的解决过程。 5. **制定检验计划**:根据生产计划和产品标准,制定相应的检验程序和标准。 6. **数据收集与分析**:记录检验数据,通过分析找出潜在问题,提出改善建议。 在工作总结部分,IPQC强调了实时监控生产过程,确保每个环节都符合质量标准。他们定期抽检产品,快速反馈问题,并进行异常分析与改进,防止问题重复出现。此外,IPQC还负责对新员工进行培训,提高团队协作和管理,以提升整体工作效率和质量水平。 在IPQC质量月报中,提到了质量目标的达成情况。虽然目标完成率达到了98%,但仍有2%的差距,主要是由于员工操作失误和质量监控不足造成的。为了改进,IPQC计划加强员工培训,提高操作技能,增强质量意识,并增加检查频率,以更严格地控制产品质量。 对于未来的展望,IPQC可能会进一步强化团队建设,优化工作流程,持续提升产品质量,以达到更高的客户满意度。团队发展计划可能包括更系统的员工培训、更高效的沟通机制以及更有激励性的管理策略。 这份PPT详细呈现了IPQC在确保产品质量、处理异常情况、提高团队绩效等方面的工作内容和挑战,同时也展现了IPQC团队对质量提升和团队发展的持续关注和努力。