用pytorch完整上面的任务
时间: 2023-07-12 14:41:08 浏览: 83
基于pytorch使用LSTM实现文本匹配任务代码和训练文件
好的,以下是使用PyTorch实现上述任务的完整代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
from sklearn.model_selection import train_test_split
# Define the model
class MultiTaskModel(nn.Module):
def __init__(self):
super(MultiTaskModel, self).__init__()
# x1 input layer
self.x1_input = nn.Linear(31, 128)
# x2 input layer
self.x2_conv = nn.Conv1d(20, 64, kernel_size=3, padding=1)
self.x2_flatten = nn.Flatten()
# x3 input layer
self.x3_conv = nn.Conv1d(30, 64, kernel_size=3, padding=1)
self.x3_flatten = nn.Flatten()
# shared fully connected layers for output
self.fc1 = nn.Linear(13184, 128)
self.fc2 = nn.Linear(128, 64)
self.output = nn.Linear(64, 4)
def forward(self, x1, x2, x3):
# x1 input layer
x1 = self.x1_input(x1)
x1 = nn.functional.relu(x1)
# x2 convolution layer
x2 = self.x2_conv(x2)
x2 = nn.functional.relu(x2)
x2 = self.x2_flatten(x2)
# x3 convolution layer
x3 = self.x3_conv(x3)
x3 = nn.functional.relu(x3)
x3 = self.x3_flatten(x3)
# concatenate x1, x2, x3
concat_layer = torch.cat((x1, x2, x3), dim=1)
# fully connected layers for output
fc1 = self.fc1(concat_layer)
fc1 = nn.functional.relu(fc1)
fc2 = self.fc2(fc1)
fc2 = nn.functional.relu(fc2)
output = self.output(fc2)
output = nn.functional.softmax(output, dim=1)
return output
# Define the training function
def train(model, optimizer, criterion, x1, x2, x3, y, batch_size):
loss_list = []
acc_list = []
total_loss = 0
total_acc = 0
# Set model to training mode
model.train()
for i in range(0, len(x1), batch_size):
# Get batch
x1_batch = x1[i:i+batch_size]
x2_batch = x2[i:i+batch_size]
x3_batch = x3[i:i+batch_size]
y_batch = y[i:i+batch_size]
# Convert to tensors
x1_tensor = torch.tensor(x1_batch, dtype=torch.float32)
x2_tensor = torch.tensor(x2_batch, dtype=torch.float32)
x3_tensor = torch.tensor(x3_batch, dtype=torch.float32)
y_tensor = torch.tensor(y_batch, dtype=torch.long)
# Zero the gradients
optimizer.zero_grad()
# Forward pass
output = model(x1_tensor, x2_tensor, x3_tensor)
# Calculate loss and accuracy
loss = criterion(output, y_tensor)
total_loss += loss.item()
pred = torch.argmax(output, dim=1)
acc = (pred == y_tensor).sum().item() / batch_size
total_acc += acc
# Backward pass
loss.backward()
optimizer.step()
# Calculate average loss and accuracy
avg_loss = total_loss / (len(x1) / batch_size)
avg_acc = total_acc / (len(x1) / batch_size)
loss_list.append(avg_loss)
acc_list.append(avg_acc)
return avg_loss, avg_acc, loss_list, acc_list
# Define the testing function
def test(model, criterion, x1, x2, x3, y, batch_size):
loss_list = []
acc_list = []
total_loss = 0
total_acc = 0
# Set model to evaluation mode
model.eval()
with torch.no_grad():
for i in range(0, len(x1), batch_size):
# Get batch
x1_batch = x1[i:i+batch_size]
x2_batch = x2[i:i+batch_size]
x3_batch = x3[i:i+batch_size]
y_batch = y[i:i+batch_size]
# Convert to tensors
x1_tensor = torch.tensor(x1_batch, dtype=torch.float32)
x2_tensor = torch.tensor(x2_batch, dtype=torch.float32)
x3_tensor = torch.tensor(x3_batch, dtype=torch.float32)
y_tensor = torch.tensor(y_batch, dtype=torch.long)
# Forward pass
output = model(x1_tensor, x2_tensor, x3_tensor)
# Calculate loss and accuracy
loss = criterion(output, y_tensor)
total_loss += loss.item()
pred = torch.argmax(output, dim=1)
acc = (pred == y_tensor).sum().item() / batch_size
total_acc += acc
# Calculate average loss and accuracy
avg_loss = total_loss / (len(x1) / batch_size)
avg_acc = total_acc / (len(x1) / batch_size)
loss_list.append(avg_loss)
acc_list.append(avg_acc)
return avg_loss, avg_acc, loss_list, acc_list
# Load the data
x1 = np.random.randn(71000, 31)
x2 = np.random.randn(71000, 9, 20)
x3 = np.random.randn(71000, 9, 30)
y = np.random.randint(0, 4, size=(71000,))
# Split the data into training and validation sets
x1_train, x1_val, x2_train, x2_val, x3_train, x3_val, y_train, y_val = train_test_split(x1, x2, x3, y, test_size=0.2)
# Define hyperparameters
batch_size = 128
lr = 0.001
num_epochs = 10
# Create the model, optimizer, and criterion
model = MultiTaskModel()
optimizer = optim.Adam(model.parameters(), lr=lr)
criterion = nn.CrossEntropyLoss()
# Train and test the model
train_loss_list = []
train_acc_list = []
val_loss_list = []
val_acc_list = []
for epoch in range(num_epochs):
print('Epoch: {}/{}'.format(epoch+1, num_epochs))
# Train the model
train_loss, train_acc, train_loss_list_epoch, train_acc_list_epoch = train(model, optimizer, criterion, x1_train, x2_train, x3_train, y_train, batch_size)
train_loss_list += train_loss_list_epoch
train_acc_list += train_acc_list_epoch
print('Training loss: {:.4f}, Training accuracy: {:.4f}'.format(train_loss, train_acc))
# Test the model
val_loss, val_acc, val_loss_list_epoch, val_acc_list_epoch = test(model, criterion, x1_val, x2_val, x3_val, y_val, batch_size)
val_loss_list += val_loss_list_epoch
val_acc_list += val_acc_list_epoch
print('Validation loss: {:.4f}, Validation accuracy: {:.4f}\n'.format(val_loss, val_acc))
```
在上述代码中,我们首先定义了一个名为`MultiTaskModel`的类,该类继承自`nn.Module`。在类的`__init__`方法中,我们定义了三个输入层,分别对应x1、x2、x3,然后将x2、x3输入到共享的卷积层进行卷积操作。接着,我们将x1、x2、x3连接起来,用全连接层生成目标数据。在`forward`方法中,我们实现了模型的前向传播过程。
接下来,我们定义了`train`函数和`test`函数,分别用于训练和测试模型。在`train`函数中,我们首先将模型设为训练模式,然后将输入数据按batch分割,并将每个batch的数据转换成PyTorch张量。接着,我们将输入数据传递给模型进行前向传播,并计算损失和准确率。最后,我们执行反向传播和参数更新。在`test`函数中,我们首先将模型设为评估模式,然后按照与`train`函数相同的方式计算损失和准确率。
在主函数中,我们首先加载数据,然后将数据分为训练集和验证集。接着,我们定义了一些超参数,包括batch大小、学习率和训练轮数。然后,我们创建了模型、优化器和损失函数,并在每个epoch中训练模型和测试模型。最后,我们将训练和验证的损失和准确率记录下来。
阅读全文