void calc_huffman_codes(HuffNode* root, string code) { if (root->left == nullptr && root->right == nullptr) { // 叶子节点,记录编码 huff_codes[root->word] = code; return; } if (root->left) { calc_huffman_codes(root->left, code + '0'); } if (root->right) { calc_huffman_codes(root->right, code + '1'); } }帮我找出错误

时间: 2024-02-20 08:00:33 浏览: 16
根据代码,无法判断`huff_codes`的类型和作用。如果`huff_codes`是一个数组或者`map`,那么在函数中使用前应该先进行初始化。此外,`root->word`也需要先进行定义或初始化。 另外,建议在函数参数中添加对`root`的非空判断,以避免出现空指针异常。例如: ``` void calc_huffman_codes(HuffNode* root, string code) { if (root == nullptr) { return; } if (root->left == nullptr && root->right == nullptr) { // 叶子节点,记录编码 huff_codes[root->word] = code; return; } if (root->left) { calc_huffman_codes(root->left, code + '0'); } if (root->right) { calc_huffman_codes(root->right, code + '1'); } } ```
相关问题

#include "dp_pid.h" extern void pid_reset( PID_STRUCT *p);//pid_reset:用于重置 PID 控制器的状态 extern void pid_init ( PID_STRUCT *p);//用于初始化 PID 控制器的参数和状态 extern void pid_clc ( PID_STRUCT *p);//用于计算 PID 控制器的输出 extern void pid_calc ( PID_STRUCT *p, float fb, float ref);//用于计算 PID 控制器的输出,并根据反馈值和参考值进行调整 PID_FUNC pid_func = { .reset = pid_reset,//.reset:指向 pid_reset 函数 .init = pid_init ,// .clc = pid_clc ,// .calc = pid_calc // }; /** ********************************************************** * @函数:void PID_DeInit( PID_STRUCT *p) * @描述:PID数据复位 * @输入:*p:定义的PID数据 * @返回:无 * @作者:何。小P * @版本:V1.0 ********************************************************** */ void pid_reset( PID_STRUCT *p) { p->a0 = 0; p->a1 = 0; p->a2 = 0; p->Ek_0 = 0; // Error[k-0] p->Ek_1 = 0; // Error[k-1] p->Ek_2 = 0; // Error[k-2] p->T = 0; //周期 p->Kp = 0; //比例系数P p->Ti = 0; //积分时间I p->Td = 0; //微分时间D p->Inc = 0; p->Output = 0; p->OutMax = 0; p->OutMin = 0; }

这段代码补充了对于 `pid_reset` 函数的定义和实现。 `pid_reset` 函数用于重置 PID 控制器的状态,接受一个指向 `PID_STRUCT` 结构体的指针 `p`。 在函数内部,将 `PID_STRUCT` 结构体中的各个成员变量重置为初始值,包括 `a0`、`a1`、`a2`、`Ek_0`、`Ek_1`、`Ek_2`、`T`、`Kp`、`Ti`、`Td`、`Inc`、`Output`、`OutMax` 和 `OutMin`。 通过调用这个函数,可以将指定的 PID 控制器的状态重置为初始状态,以便重新开始控制过程。 需要注意的是,在这段代码中,给出了 `PID_STRUCT` 结构体的定义和声明。所以,这个函数能够正确运行,并且可以与之前提到的 `pid_func.reset` 对应起来。

fp32 PID_calc(pid_type_def *pid, fp32 ref, fp32 set) { if (pid == NULL) { return 0.0f; } pid->error[2] = pid->error[1]; pid->error[1] = pid->error[0]; pid->set = set; pid->fdb = ref; pid->error[0] = set - ref; //最新误差=设定值-反馈数值 if (pid->mode == PID_POSITION) //位置式pid { pid->Pout = pid->Kp * pid->error[0]; //Kp*偏差 pid->Iout += pid->Ki * pid->error[0]; //Ki*偏差和 pid->Dbuf[2] = pid->Dbuf[1]; pid->Dbuf[1] = pid->Dbuf[0]; pid->Dbuf[0] = (pid->error[0] - pid->error[1]); pid->Dout = pid->Kd * pid->Dbuf[0]; //Kd*(偏差-上偏差) LimitMax(pid->Iout, pid->max_iout); pid->out = pid->Pout + pid->Iout + pid->Dout; LimitMax(pid->out, pid->max_out); } else if (pid->mode == PID_DELTA) //增量式pid { pid->Pout = pid->Kp * (pid->error[0] - pid->error[1]); pid->Iout = pid->Ki * pid->error[0]; pid->Dbuf[2] = pid->Dbuf[1]; pid->Dbuf[1] = pid->Dbuf[0]; pid->Dbuf[0] = (pid->error[0] - 2.0f * pid->error[1] + pid->error[2]); pid->Dout = pid->Kd * pid->Dbuf[0]; pid->out += pid->Pout + pid->Iout + pid->Dout; LimitMax(pid->out, pid->max_out); } return 0; }分析以上C语言程序

这段程序实现了一个PID控制器,用于控制一个系统的输出,使其达到所设置的目标值。函数名为PID_calc,接受三个参数:指向PID控制器结构体的指针pid,目标值ref和设置值set。 在函数中,首先判断pid是否为NULL,如果是,则返回0.0f。接下来将当前的误差值存储到pid->error[2]中,上一次的误差值存储到pid->error[1]中,当前误差值计算并存储到pid->error[0]中。根据PID控制器的模式(位置式或增量式),计算P、I、D三个控制量,累加得到输出值pid->out,并对输出值进行限制,最后返回0。 在位置式PID控制器中,P、I、D三个控制量分别表示比例、积分、微分,Pout为比例控制量,Iout为积分控制量,Dout为微分控制量。在增量式PID控制器中,P、I、D三个控制量分别表示比例增量、积分增量、微分增量,Pout为比例增量,Iout为积分增量,Dout为微分增量。

相关推荐

解释这段代码static void chassis_control_loop(chassis_move_t *chassis_move_control_loop) { fp32 max_vector = 0.0f, vector_rate = 0.0f; fp32 temp = 0.0f; fp32 wheel_speed[4] = {0.0f, 0.0f, 0.0f, 0.0f}; uint8_t i = 0; float position_error, speed_error; float position_output, speed_output; float current_position, current_speed; float target_position, target_speed; chassis_move_control_loop->vx_set=vx_set; chassis_move_control_loop->vy_set=vy_set; chassis_move_control_loop->wz_set=angle_set; chassis_vector_to_mecanum_wheel_speed(chassis_move_control_loop->vx_set, chassis_move_control_loop->vy_set, chassis_move_control_loop->wz_set, wheel_speed); if (chassis_move_control_loop->chassis_mode == CHASSIS_VECTOR_RAW) { for (i = 0; i < 4; i++) { chassis_move_control_loop->motor_chassis[i].give_current = (int16_t)(wheel_speed[i]); } } for (i = 0; i < 4; i++) { chassis_move_control_loop->motor_chassis[i].speed_set = wheel_speed[i]; temp = fabs(chassis_move_control_loop->motor_chassis[i].speed_set); if (max_vector < temp) { max_vector = temp; } } if (max_vector > MAX_WHEEL_SPEED) { vector_rate = MAX_WHEEL_SPEED / max_vector; for (i = 0; i < 4; i++) { chassis_move_control_loop->motor_chassis[i].speed_set *= vector_rate; } } for (i = 0; i < 4; i++) { PID_Calc(&chassis_move_control_loop->motor_speed_pid[i], chassis_move_control_loop->motor_chassis[i].speed, chassis_move_control_loop->motor_chassis[i].speed_set); } for (i = 0; i < 4; i++) { chassis_move_control_loop->motor_chassis[i].give_current = (int16_t)(chassis_move_control_loop->motor_speed_pid[i].out); } }

static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs) { struct nvme_dev *dev = affd->priv; unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues; if (!nrirqs) { nrirqs = 1; nr_read_queues = 0; } else if (nrirqs == 1 || !nr_write_queues) { nr_read_queues = 0; } else if (nr_write_queues >= nrirqs) { nr_read_queues = 1; } else { nr_read_queues = nrirqs - nr_write_queues; } dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; dev->io_queues[HCTX_TYPE_READ] = nr_read_queues; affd->set_size[HCTX_TYPE_READ] = nr_read_queues; affd->nr_sets = nr_read_queues ? 2 : 1; }static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues) { struct pci_dev *pdev = to_pci_dev(dev->dev); struct irq_affinity affd = { //ָ���ж��׺��Եļ��㷽���Ͳ��� .pre_vectors = 1, .calc_sets = nvme_set_irq_affinity, //nvme_calc_irq_sets, .priv = dev, }; unsigned int irq_queues, poll_queues; poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1); dev->io_queues[HCTX_TYPE_POLL] = poll_queues; dev->io_queues[HCTX_TYPE_DEFAULT] = 1; dev->io_queues[HCTX_TYPE_READ] = 0; irq_queues = 1; if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR)) irq_queues += (nr_io_queues - poll_queues); return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd); } 在 Linux 5.17.12 内核版本中,可以通过修改 pci_alloc_irq_vectors_affinity() 函数的 affinity_hint 参数来绑定 NVMe 驱动的所有 I/O 队列到同一 CPU 核心上。

static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs) { struct nvme_dev *dev = affd->priv; unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues; if (!nrirqs) { nrirqs = 1; nr_read_queues = 0; } else if (nrirqs == 1 || !nr_write_queues) { nr_read_queues = 0; } else if (nr_write_queues >= nrirqs) { nr_read_queues = 1; } else { nr_read_queues = nrirqs - nr_write_queues; } dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; dev->io_queues[HCTX_TYPE_READ] = nr_read_queues; affd->set_size[HCTX_TYPE_READ] = nr_read_queues; affd->nr_sets = nr_read_queues ? 2 : 1; }static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues) { struct pci_dev *pdev = to_pci_dev(dev->dev); struct irq_affinity affd = { //ָ���ж��׺��Եļ��㷽���Ͳ��� .pre_vectors = 1, .calc_sets = nvme_set_irq_affinity, //nvme_calc_irq_sets, .priv = dev, }; unsigned int irq_queues, poll_queues; poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1); dev->io_queues[HCTX_TYPE_POLL] = poll_queues; dev->io_queues[HCTX_TYPE_DEFAULT] = 1; dev->io_queues[HCTX_TYPE_READ] = 0; irq_queues = 1; if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR)) irq_queues += (nr_io_queues - poll_queues); return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd); } 在 Linux 5.17.12 内核版本中,如何修改 pci_alloc_irq_vectors_affinity() 函数的 affinity_hint 参数来绑定 NVMe 驱动的所有 I/O 队列到同一 CPU 核心上。代码展示

最新推荐

recommend-type

SPWM波形生成工具spwm_calc_v1.3.2使用说明.pdf

在很早以前(记得大概在 2013 年的样子吧)分享了自己写的一个 SPWM 工具与一些相关技术资料,这期间收到了许多网友的信息,也结交了不少的网友。总体来说本 SPWM 工具使用起来还是比较简单方便的,之前在几个大的...
recommend-type

#这是一篇关于 LabVIEW 介绍说明、使用技巧和优缺点对文章

labview
recommend-type

重庆大学数字电子技术试题.pdf

重庆大学期末考试试卷,重大期末考试试题,试题及答案
recommend-type

重庆大学2012电磁场考题(A)参考答案及评分标准.pdf

重庆大学期末考试试卷,重大期末考试试题,试题及答案
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:YOLO目标检测算法的挑战与机遇:数据质量、计算资源与算法优化,探索未来发展方向

![:YOLO目标检测算法的挑战与机遇:数据质量、计算资源与算法优化,探索未来发展方向](https://img-blog.csdnimg.cn/7e3d12895feb4651b9748135c91e0f1a.png?x-oss-process=image/watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBA5rKJ6YaJ77yM5LqO6aOO5Lit,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. YOLO目标检测算法简介 YOLO(You Only Look Once)是一种
recommend-type

def ObjFun(x,y,beta): # 目标函数 """ Logistic regression loss function :param beta: model parameter vector :param x: feature matrix :param y: label vector :return: loss value """ n = x.shape[0] p = x.shape[1] pred = 1 / (1 + np.exp(-np.dot(x, beta))) pred = np.clip(pred, 1e-15, 1 - 1e-15) # 将预测值限制在一个很小的区间内 ObjVal = -np.sum(y * np.log(pred) + (1 - y) * np.log(1 - pred)) / n return ObjVal

好的,根据上面的目标函数,我们可以推导出其对应的梯度向量函数,如下所示: def gradient(x, y, beta): """ Compute gradient of the logistic regression loss function :param beta: model parameter vector :param x: feature matrix :param y: label vector :return: gradient vector """ n = x.shape[0] pred = 1 /
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依