mnist数据集转化为npy文件
时间: 2023-05-24 21:04:46 浏览: 659
以下是将MNIST数据集转化为npy文件的Python代码示例:
```python
import numpy as np
import os
from tensorflow import keras
# 加载MNIST数据集
mnist = keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()
# 将训练和测试数据集转化为npy文件并保存到本地
os.makedirs('data', exist_ok=True)
np.save('data/train_images.npy', train_images)
np.save('data/train_labels.npy', train_labels)
np.save('data/test_images.npy', test_images)
np.save('data/test_labels.npy', test_labels)
```
在此代码示例中,我们首先使用TensorFlow的Keras API加载MNIST数据集,并将其划分为训练和测试数据集。然后,我们使用NumPy的`np.save`函数将训练和测试数据集保存为npy文件,并将它们存储在名为"data"的目录中。请注意,我们使用了`os.makedirs`函数来确保"data"目录存在并在需要时自动创建。
通过这个示例代码,您可以将MNIST数据集转化为numpy文件并保存到本地。
相关问题
载入mnist数据集的npy文件,转化为图像,并显示0到9的图像
以下是载入mnist数据集的npy文件,转化为图像,并显示0到9的图像的Python代码:
```python
import numpy as np
import matplotlib.pyplot as plt
# 载入mnist数据集的npy文件
train_data = np.load('mnist_train_data.npy')
train_labels = np.load('mnist_train_labels.npy')
# 将数据集中的图像转化为图像矩阵并显示
for i in range(10):
img = train_data[i].reshape((28,28))
plt.imshow(img, cmap='gray')
plt.title('Label: {}'.format(train_labels[i]))
plt.show()
```
该代码首先载入了mnist数据集的npy文件,然后将数据集中的图像转化为图像矩阵,并使用matplotlib库中的imshow函数显示出来。最后,循环显示0到9的图像及其对应的标签。
mnist数据集经过50次pgd攻击生成对抗样本,并转化为npy文件
作为AI助手,我无法直接生成对抗样本。不过,下面是一些可以生成对抗样本的Python代码,您可以参考一下:
```python
import numpy as np
import tensorflow as tf
import keras
from keras.datasets import mnist
# Load MNIST dataset
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.astype('float32') / 255.
x_test = x_test.astype('float32') / 255.
# Define the model
model = keras.models.Sequential([
keras.layers.Flatten(input_shape=[28, 28]),
keras.layers.Dense(300, activation="relu"),
keras.layers.Dense(100, activation="relu"),
keras.layers.Dense(10, activation="softmax")
])
# Compile the model
model.compile(loss="sparse_categorical_crossentropy",
optimizer="adam", metrics=["accuracy"])
# Train the model
model.fit(x_train, y_train, epochs=50, validation_data=(x_test, y_test))
# Generate adversarial examples using Projected Gradient Descent (PGD) attack
def pgd_attack(model, x, y, eps=0.1, alpha=0.01, iter=40):
delta = tf.zeros_like(x, dtype=tf.float32)
for t in range(iter):
with tf.GradientTape() as tape:
tape.watch(delta)
loss = keras.losses.sparse_categorical_crossentropy(y, model(x + delta))
# Compute gradients
g = tape.gradient(loss, delta)
# Add a small perturbation to the delta using the gradient
g = tf.sign(g)
delta = tf.clip_by_value(delta + alpha * g, -eps, eps)
delta = tf.clip_by_value(x + delta, 0, 1) - x
return delta.numpy()
adv_x_train = np.zeros_like(x_train)
adv_x_test = np.zeros_like(x_test)
for i in range(len(x_train)):
adv_x_train[i] = x_train[i] + pgd_attack(model, x_train[i][np.newaxis], np.array([y_train[i]]))
for i in range(len(x_test)):
adv_x_test[i] = x_test[i] + pgd_attack(model, x_test[i][np.newaxis], np.array([y_test[i]]))
# Save the adversarial examples
np.save("adv_x_train.npy", adv_x_train)
np.save("adv_x_test.npy", adv_x_test)
```
这段代码会加载MNIST数据集,并对其进行训练。然后,使用PGD攻击生成对抗样本,并保存为npy文件。需要使用TensorFlow2.x和Keras库来运行此代码。
阅读全文