mnist数据集转化为npy文件 
时间: 2023-05-24 10:04:46 浏览: 65
以下是将MNIST数据集转化为npy文件的Python代码示例:
```python
import numpy as np
import os
from tensorflow import keras
# 加载MNIST数据集
mnist = keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()
# 将训练和测试数据集转化为npy文件并保存到本地
os.makedirs('data', exist_ok=True)
np.save('data/train_images.npy', train_images)
np.save('data/train_labels.npy', train_labels)
np.save('data/test_images.npy', test_images)
np.save('data/test_labels.npy', test_labels)
```
在此代码示例中,我们首先使用TensorFlow的Keras API加载MNIST数据集,并将其划分为训练和测试数据集。然后,我们使用NumPy的`np.save`函数将训练和测试数据集保存为npy文件,并将它们存储在名为"data"的目录中。请注意,我们使用了`os.makedirs`函数来确保"data"目录存在并在需要时自动创建。
通过这个示例代码,您可以将MNIST数据集转化为numpy文件并保存到本地。
相关问题
mnist数据集经过50次pgd攻击生成对抗样本,并转化为npy文件
作为AI助手,我无法直接生成对抗样本。不过,下面是一些可以生成对抗样本的Python代码,您可以参考一下:
```python
import numpy as np
import tensorflow as tf
import keras
from keras.datasets import mnist
# Load MNIST dataset
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.astype('float32') / 255.
x_test = x_test.astype('float32') / 255.
# Define the model
model = keras.models.Sequential([
keras.layers.Flatten(input_shape=[28, 28]),
keras.layers.Dense(300, activation="relu"),
keras.layers.Dense(100, activation="relu"),
keras.layers.Dense(10, activation="softmax")
])
# Compile the model
model.compile(loss="sparse_categorical_crossentropy",
optimizer="adam", metrics=["accuracy"])
# Train the model
model.fit(x_train, y_train, epochs=50, validation_data=(x_test, y_test))
# Generate adversarial examples using Projected Gradient Descent (PGD) attack
def pgd_attack(model, x, y, eps=0.1, alpha=0.01, iter=40):
delta = tf.zeros_like(x, dtype=tf.float32)
for t in range(iter):
with tf.GradientTape() as tape:
tape.watch(delta)
loss = keras.losses.sparse_categorical_crossentropy(y, model(x + delta))
# Compute gradients
g = tape.gradient(loss, delta)
# Add a small perturbation to the delta using the gradient
g = tf.sign(g)
delta = tf.clip_by_value(delta + alpha * g, -eps, eps)
delta = tf.clip_by_value(x + delta, 0, 1) - x
return delta.numpy()
adv_x_train = np.zeros_like(x_train)
adv_x_test = np.zeros_like(x_test)
for i in range(len(x_train)):
adv_x_train[i] = x_train[i] + pgd_attack(model, x_train[i][np.newaxis], np.array([y_train[i]]))
for i in range(len(x_test)):
adv_x_test[i] = x_test[i] + pgd_attack(model, x_test[i][np.newaxis], np.array([y_test[i]]))
# Save the adversarial examples
np.save("adv_x_train.npy", adv_x_train)
np.save("adv_x_test.npy", adv_x_test)
```
这段代码会加载MNIST数据集,并对其进行训练。然后,使用PGD攻击生成对抗样本,并保存为npy文件。需要使用TensorFlow2.x和Keras库来运行此代码。
50次pgd攻击,生成mnist数据集的对抗样本,并将对抗样本转化为npy文件
以下是 Python 代码,使用 FGSM 和 PGD 攻击生成 MNIST 数据集的对抗样本,并将其保存为 .npy 文件:
```python
import tensorflow as tf
import numpy as np
from keras.datasets import mnist
# 加载 MNIST 数据集
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
x_train = x_train.reshape(-1, 28, 28, 1)
x_test = x_test.reshape(-1, 28, 28, 1)
# 定义模型
model = tf.keras.models.Sequential([
tf.keras.layers.Conv2D(32, (3,3), activation='relu', input_shape=(28, 28, 1)),
tf.keras.layers.MaxPooling2D((2, 2)),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
# 训练模型
model.fit(x_train, y_train, epochs=5, validation_data=(x_test, y_test))
# FGSM 攻击
def fgsm_attack(image, epsilon, gradient):
sign_gradient = tf.sign(gradient)
perturbed_image = image + epsilon * sign_gradient
perturbed_image = tf.clip_by_value(perturbed_image, 0, 1)
return perturbed_image
# PGD 攻击
def pgd_attack(model, image, label, epsilon, alpha, iterations):
adv_image = tf.identity(image)
for i in range(iterations):
with tf.GradientTape() as tape:
tape.watch(adv_image)
prediction = model(adv_image)
loss = tf.keras.losses.sparse_categorical_crossentropy(label, prediction)
gradient = tape.gradient(loss, adv_image)
signed_grad = tf.sign(gradient)
perturbed_image = adv_image + alpha*signed_grad
perturbed_image = tf.clip_by_value(perturbed_image, 0, 1)
perturbed_image = fgsm_attack(perturbed_image, epsilon, gradient)
adv_image = tf.identity(perturbed_image)
return adv_image.numpy()
# 生成对抗样本并保存为 npy 文件
eps = 0.15
alpha = 0.01
iters = 50
adversarial_images = []
for i in range(x_test.shape[0]):
img = np.expand_dims(x_test[i], axis=0)
label = tf.cast(y_test[i], tf.int64)
adv_img = pgd_attack(model, img, label, eps, alpha, iters)
adversarial_images.append(adv_img)
adversarial_images = np.array(adversarial_images)
np.save('adversarial_mnist.npy', adversarial_images)
```
在以上代码中,我们首先加载 MNIST 数据集,并将像素值缩小到 0 到 1 之间。然后,我们定义了一个简单的 CNN 模型,并使用训练集对其进行了训练。
接下来,我们定义并实现了 FGSM 和 PGD 攻击。FGSM 攻击只需在模型梯度的基础上添加扰动,而 PGD 攻击是一种迭代攻击,每次迭代会计算梯度并加上一个小扰动,最终生成对抗样本。
最后,我们使用 PGD 攻击生成 MNIST 数据集的 50 个对抗样本,并将其保存为 .npy 文件。
相关推荐















