写一个用pytorch,VGG16分析JAFFE数据的代码,
时间: 2023-06-10 08:03:29 浏览: 133
好的,以下是一个简单的用PyTorch和VGG16进行JAFFE数据分析的代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.models as models
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
# 定义数据预处理的transforms
data_transforms = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])
# 加载JAFFE数据集
train_dataset = datasets.ImageFolder(root='data/jaffe/train', transform=data_transforms)
train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True)
# 定义VGG16模型
model = models.vgg16(pretrained=True)
model.classifier[6] = nn.Linear(4096, 7) # 修改最后一层全连接层的输出
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
# 训练模型
for epoch in range(10):
running_loss = 0.0
for inputs, labels in train_loader:
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
epoch_loss = running_loss / len(train_dataset)
print('Epoch %d loss: %.3f' % (epoch+1, epoch_loss))
```
请注意:这只是一个示例代码,需要根据您的实际数据集和训练任务进行修改。另外,数据集需要按照PyTorch默认的ImageFolder格式组织,即每个类别的图像应该放在单独的子文件夹中。
阅读全文