device: 0, cuDNN Version: 8.9.
时间: 2024-02-03 17:03:05 浏览: 103
这段信息是关于使用的cuDNN库的版本信息。
"device: 0" 表示使用的是第一个GPU设备。
"cuDNN Version: 8.9" 是指所使用的cuDNN库的版本号为8.9。
cuDNN是一个由NVIDIA开发的加速深度神经网络的库,它提供了高效的GPU加速计算、自动调节超参数、高度优化的卷积和池化操作等功能,可以大幅提升深度学习模型的训练和推理速度。在使用CUDA和GPU加速深度学习训练时,通常需要使用cuDNN库。
相关问题
try: import thop except ImportError: thop = None logger = logging.getLogger(__name__) @contextmanager def torch_distributed_zero_first(local_rank: int): if local_rank not in [-1, 0]: torch.distributed.barrier() yield if local_rank == 0: torch.distributed.barrier() def init_torch_seeds(seed=0): torch.manual_seed(seed) if seed == 0: cudnn.benchmark, cudnn.deterministic = False, True else: cudnn.benchmark, cudnn.deterministic = True, False def select_device(device='', batch_size=None): s = f'YOLOv5 🚀 {git_describe() or date_modified()} torch {torch.__version__} ' cpu = device.lower() == 'cpu' if cpu: os.environ['CUDA_VISIBLE_DEVICES'] = '-1' elif device: # non-cpu device requested os.environ['CUDA_VISIBLE_DEVICES'] = device assert torch.cuda.is_available(), f'CUDA unavailable, invalid device {device} requested' cuda = not cpu and torch.cuda.is_available() if cuda: n = torch.cuda.device_count() if n > 1 and batch_size: # check that batch_size is compatible with device_count assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}' space = ' ' * len(s) for i, d in enumerate(device.split(',') if device else range(n)): p = torch.cuda.get_device_properties(i) s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / 1024 ** 2}MB)\n" s += 'CPU\n' logger.info(s.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else s) # emoji-safe return torch.device('cuda:0' if cuda else 'cpu') def time_synchronized(): if torch.cuda.is_available(): torch.cuda.synchronize() return time.time()
这段代码是一个Python脚本,包含了一些用于PyTorch训练的实用函数。具体来说,它包含了以下函数:
- import thop:导入PyTorch的模块thop,用于计算模型的FLOPs和参数数量。
- torch_distributed_zero_first:用于在分布式训练中同步所有进程的执行顺序。
- init_torch_seeds:用于初始化PyTorch的随机数种子。
- select_device:用于选择PyTorch的设备,可以选择CPU或GPU。
- time_synchronized:用于在CPU和GPU之间同步时间。
这些函数都是用于方便PyTorch训练的实用函数,可以大大简化代码编写。
cudnn.benchmark = True device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
As an AI language model, I can tell you that this code seems to be setting the cudnn benchmark to True and checking if a CUDA-enabled device is available. If a CUDA-enabled device is available, it sets the device to be used as 'cuda:0', otherwise it sets the device to be used as 'cpu'.
The cudnn.benchmark setting is used to optimize the performance of the convolutional neural network (CNN) during training by finding the best algorithm to use for the given hardware. This can speed up training time, but may take longer to set up the first time the code is run.
Overall, this code seems to be preparing the environment for using a GPU (if available) to speed up training of a CNN.
阅读全文