stm32f103c8t6用pid算法控制五路循迹小车

时间: 2023-09-14 13:15:19 浏览: 41
要使用PID算法控制五路循迹小车,你需要进行以下步骤: 1. 确定你的传感器类型:IR传感器或者是光敏传感器。IR传感器测量黑线和白线之间的反射率差异,而光敏传感器测量黑线和白线之间的光强差异。 2. 确定你的控制目标:你需要知道你的小车要沿着什么样的轨迹行驶。你可以使用PID算法来控制小车在一条直线上行驶,也可以使用它来控制小车在弯曲的轨迹上行驶。 3. 实现PID算法:PID算法包括三个部分:比例、积分、微分。你需要根据你的传感器类型和控制目标来确定PID算法的参数。 4. 编写代码:使用STM32F103C8T6单片机,你可以通过编写C语言代码来实现PID算法。 5. 测试和调试:在完成代码编写后,你需要对小车进行测试和调试,以确保它能够沿着你预期的轨迹行驶。如果小车不能按预期行驶,你需要调整PID算法的参数并重新测试,直到小车能够稳定地行驶。 需要注意的是,五路循迹小车的控制比较复杂,需要对硬件和软件都有一定的了解。如果你是初学者,可以先从控制双路循迹小车开始学习。
相关问题

stm32f103c8t6用pid算法控制五路循迹小车(无需测速,用直流电机控制)

好的,下面是一个简单的基于STM32F103C8T6的PID算法控制五路循迹小车的示例代码: ```c #include "stm32f10x.h" // 定义电机控制引脚 #define MOTOR_1_A_Pin GPIO_Pin_0 #define MOTOR_1_B_Pin GPIO_Pin_1 #define MOTOR_2_A_Pin GPIO_Pin_2 #define MOTOR_2_B_Pin GPIO_Pin_3 #define MOTOR_3_A_Pin GPIO_Pin_4 #define MOTOR_3_B_Pin GPIO_Pin_5 #define MOTOR_4_A_Pin GPIO_Pin_6 #define MOTOR_4_B_Pin GPIO_Pin_7 #define MOTOR_5_A_Pin GPIO_Pin_8 #define MOTOR_5_B_Pin GPIO_Pin_9 // 定义循迹传感器引脚 #define SENSOR_1_Pin GPIO_Pin_10 #define SENSOR_2_Pin GPIO_Pin_11 #define SENSOR_3_Pin GPIO_Pin_12 #define SENSOR_4_Pin GPIO_Pin_13 #define SENSOR_5_Pin GPIO_Pin_14 // PID参数 double kp = 0.5; double ki = 0.1; double kd = 0.1; // 循迹传感器阈值 int threshold = 500; // 当前偏差 int currentError = 0; // 上一次偏差 int lastError = 0; // 积分项 double integral = 0; // 微分项 double derivative = 0; // 目标速度(PWM占空比) int targetSpeed = 100; // 左右电机PWM值 int pwmLeft = 0; int pwmRight = 0; // 初始化GPIO void initGPIO() { RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE); GPIO_InitTypeDef GPIO_InitStruct; GPIO_InitStruct.GPIO_Pin = MOTOR_1_A_Pin | MOTOR_1_B_Pin | MOTOR_2_A_Pin | MOTOR_2_B_Pin | MOTOR_3_A_Pin | MOTOR_3_B_Pin | MOTOR_4_A_Pin | MOTOR_4_B_Pin | MOTOR_5_A_Pin | MOTOR_5_B_Pin; GPIO_InitStruct.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOA, &GPIO_InitStruct); GPIO_InitStruct.GPIO_Pin = SENSOR_1_Pin | SENSOR_2_Pin | SENSOR_3_Pin | SENSOR_4_Pin | SENSOR_5_Pin; GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AIN; GPIO_Init(GPIOB, &GPIO_InitStruct); } // 读取循迹传感器值 void readSensors(int *sensorValues) { sensorValues[0] = ADC_GetConversionValue(ADC1); sensorValues[1] = ADC_GetConversionValue(ADC2); sensorValues[2] = ADC_GetConversionValue(ADC3); sensorValues[3] = ADC_GetConversionValue(ADC4); sensorValues[4] = ADC_GetConversionValue(ADC5); } // 控制电机 void controlMotors(int pwmLeft, int pwmRight) { if (pwmLeft > 0) { GPIO_SetBits(GPIOA, MOTOR_1_A_Pin); GPIO_ResetBits(GPIOA, MOTOR_1_B_Pin); TIM_SetCompare1(TIM1, pwmLeft); } else if (pwmLeft < 0) { GPIO_ResetBits(GPIOA, MOTOR_1_A_Pin); GPIO_SetBits(GPIOA, MOTOR_1_B_Pin); TIM_SetCompare1(TIM1, -pwmLeft); } else { GPIO_ResetBits(GPIOA, MOTOR_1_A_Pin); GPIO_ResetBits(GPIOA, MOTOR_1_B_Pin); TIM_SetCompare1(TIM1, 0); } if (pwmRight > 0) { GPIO_SetBits(GPIOA, MOTOR_2_A_Pin); GPIO_ResetBits(GPIOA, MOTOR_2_B_Pin); TIM_SetCompare2(TIM1, pwmRight); } else if (pwmRight < 0) { GPIO_ResetBits(GPIOA, MOTOR_2_A_Pin); GPIO_SetBits(GPIOA, MOTOR_2_B_Pin); TIM_SetCompare2(TIM1, -pwmRight); } else { GPIO_ResetBits(GPIOA, MOTOR_2_A_Pin); GPIO_ResetBits(GPIOA, MOTOR_2_B_Pin); TIM_SetCompare2(TIM1, 0); } if (pwmLeft > 0) { GPIO_SetBits(GPIOA, MOTOR_3_A_Pin); GPIO_ResetBits(GPIOA, MOTOR_3_B_Pin); TIM_SetCompare3(TIM1, pwmLeft); } else if (pwmLeft < 0) { GPIO_ResetBits(GPIOA, MOTOR_3_A_Pin); GPIO_SetBits(GPIOA, MOTOR_3_B_Pin); TIM_SetCompare3(TIM1, -pwmLeft); } else { GPIO_ResetBits(GPIOA, MOTOR_3_A_Pin); GPIO_ResetBits(GPIOA, MOTOR_3_B_Pin); TIM_SetCompare3(TIM1, 0); } if (pwmRight > 0) { GPIO_SetBits(GPIOA, MOTOR_4_A_Pin); GPIO_ResetBits(GPIOA, MOTOR_4_B_Pin); TIM_SetCompare4(TIM1, pwmRight); } else if (pwmRight < 0) { GPIO_ResetBits(GPIOA, MOTOR_4_A_Pin); GPIO_SetBits(GPIOA, MOTOR_4_B_Pin); TIM_SetCompare4(TIM1, -pwmRight); } else { GPIO_ResetBits(GPIOA, MOTOR_4_A_Pin); GPIO_ResetBits(GPIOA, MOTOR_4_B_Pin); TIM_SetCompare4(TIM1, 0); } if (pwmLeft > 0) { GPIO_SetBits(GPIOA, MOTOR_5_A_Pin); GPIO_ResetBits(GPIOA, MOTOR_5_B_Pin); } else if (pwmLeft < 0) { GPIO_ResetBits(GPIOA, MOTOR_5_A_Pin); GPIO_SetBits(GPIOA, MOTOR_5_B_Pin); } else { GPIO_ResetBits(GPIOA, MOTOR_5_A_Pin); GPIO_ResetBits(GPIOA, MOTOR_5_B_Pin); } } // 计算PID控制量 void calculatePID(int *sensorValues) { currentError = 0; int sum = 0; for (int i = 0; i < 5; i++) { if (sensorValues[i] > threshold) { currentError += (i - 2) * sensorValues[i]; sum += sensorValues[i]; } } if (sum == 0) { currentError = 0; } else { currentError /= sum; } integral += currentError; derivative = currentError - lastError; lastError = currentError; pwmLeft = targetSpeed + kp * currentError + ki * integral + kd * derivative; pwmRight = targetSpeed - kp * currentError - ki * integral - kd * derivative; } int main(void) { // 初始化GPIO initGPIO(); // 初始化ADC RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1 | RCC_APB2Periph_ADC2 | RCC_APB2Periph_ADC3 | RCC_APB2Periph_ADC4 | RCC_APB2Periph_ADC5, ENABLE); ADC_InitTypeDef ADC_InitStruct; ADC_InitStruct.ADC_Mode = ADC_Mode_Independent; ADC_InitStruct.ADC_ScanConvMode = ENABLE; ADC_InitStruct.ADC_ContinuousConvMode = ENABLE; ADC_InitStruct.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None; ADC_InitStruct.ADC_DataAlign = ADC_DataAlign_Right; ADC_InitStruct.ADC_NbrOfChannel = 5; ADC_Init(ADC1, &ADC_InitStruct); ADC_Init(ADC2, &ADC_InitStruct); ADC_Init(ADC3, &ADC_InitStruct); ADC_Init(ADC4, &ADC_InitStruct); ADC_Init(ADC5, &ADC_InitStruct); ADC_RegularChannelConfig(ADC1, ADC_Channel_10, 1, ADC_SampleTime_55Cycles5); ADC_RegularChannelConfig(ADC2, ADC_Channel_11, 1, ADC_SampleTime_55Cycles5); ADC_RegularChannelConfig(ADC3, ADC_Channel_12, 1, ADC_SampleTime_55Cycles5); ADC_RegularChannelConfig(ADC4, ADC_Channel_13, 1, ADC_SampleTime_55Cycles5); ADC_RegularChannelConfig(ADC5, ADC_Channel_14, 1, ADC_SampleTime_55Cycles5); ADC_Cmd(ADC1, ENABLE); ADC_Cmd(ADC2, ENABLE); ADC_Cmd(ADC3, ENABLE); ADC_Cmd(ADC4, ENABLE); ADC_Cmd(ADC5, ENABLE); ADC_ResetCalibration(ADC1); ADC_ResetCalibration(ADC2); ADC_ResetCalibration(ADC3); ADC_ResetCalibration(ADC4); ADC_ResetCalibration(ADC5); while (ADC_GetResetCalibrationStatus(ADC1) || ADC_GetResetCalibrationStatus(ADC2) || ADC_GetResetCalibrationStatus(ADC3) || ADC_GetResetCalibrationStatus(ADC4) || ADC_GetResetCalibrationStatus(ADC5)); ADC_StartCalibration(ADC1); ADC_StartCalibration(ADC2); ADC_StartCalibration(ADC3); ADC_StartCalibration(ADC4); ADC_StartCalibration(ADC5); while (ADC_GetCalibrationStatus(ADC1) || ADC_GetCalibrationStatus(ADC2) || ADC_GetCalibrationStatus(ADC3) || ADC_GetCalibrationStatus(ADC4) || ADC_GetCalibrationStatus(ADC5)); ADC_SoftwareStartConvCmd(ADC1, ENABLE); ADC_SoftwareStartConvCmd(ADC2, ENABLE); ADC_SoftwareStartConvCmd(ADC3, ENABLE); ADC_SoftwareStartConvCmd(ADC4, ENABLE); ADC_SoftwareStartConvCmd(ADC5, ENABLE); // 初始化定时器 RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE); TIM_TimeBaseInitTypeDef TIM_TimeBaseStruct; TIM_TimeBaseStruct.TIM_Prescaler = 72 - 1; TIM_TimeBaseStruct.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseStruct.TIM_Period = 1000 - 1; TIM_TimeBaseStruct.TIM_ClockDivision = TIM_CKD_DIV1; TIM_TimeBaseStruct.TIM_RepetitionCounter = 0; TIM_TimeBaseInit(TIM1, &TIM_TimeBaseStruct); TIM_Cmd(TIM1, ENABLE); TIM_OCInitTypeDef TIM_OCInitStruct; TIM_OCInitStruct.TIM_OCMode = TIM_OCMode_PWM1; TIM_OCInitStruct.TIM_OutputState = TIM_OutputState_Enable; TIM_OCInitStruct.TIM_OutputNState = TIM_OutputNState_Disable; TIM_OCInitStruct.TIM_Pulse = 0; TIM_OCInitStruct.TIM_OCPolarity = TIM_OCPolarity_High; TIM_OCInitStruct.TIM_OCNPolarity = TIM_OCNPolarity_High; TIM_OCInitStruct.TIM_OCIdleState = TIM_OCIdleState_Reset; TIM_OCInitStruct.TIM_OCNIdleState = TIM_OCNIdleState_Reset; TIM_OC1Init(TIM1, &TIM_OCInitStruct); TIM_OC2Init(TIM1, &TIM_OCInitStruct); TIM_OC3Init(TIM1, &TIM_OCInitStruct); TIM_OC4Init(TIM1, &TIM_OCInitStruct); while (1) { int sensorValues[5]; readSensors(sensorValues); calculatePID(sensorValues); controlMotors(pwmLeft, pwmRight); } } ``` 这个代码中,我们使用了STM32F103C8T6的定时器和PWM功能来控制电机的转速,使用了STM32F103C8T6的ADC功能来读取循迹传感器的值,并通过PID算法计算出左右电机的PWM值,从而实现对五路循迹小车的控制。

stm32f103c8t6用pid算法写一个五路的循迹小车

首先,需要了解PID控制算法的基本原理。PID控制器是一种常见的控制器,它可以通过测量当前状态和目标状态之间的差异来计算输出信号,从而使系统稳定在目标状态。PID控制器由三部分组成:比例项、积分项和微分项,可以通过调整这三个项的权重来优化控制器的性能。 对于循迹小车,需要使用线性光敏二极管(LDR)传感器来检测车辆的位置,然后使用PID控制器来调整车轮的速度,使车辆沿着轨迹行驶。 以下是一个简单的 PID 控制器的实现示例: ```c #include <stdint.h> // PID控制器参数 #define KP 0.5 #define KI 0.2 #define KD 0.1 // PID控制器状态 typedef struct { float error; float error_sum; float error_diff; float last_error; } pid_state_t; // PID控制器初始化 void pid_init(pid_state_t *pid) { pid->error = 0; pid->error_sum = 0; pid->error_diff = 0; pid->last_error = 0; } // PID控制器计算输出 float pid_compute(pid_state_t *pid) { float output = 0; pid->error_diff = pid->error - pid->last_error; pid->error_sum += pid->error; output = KP * pid->error; output += KI * pid->error_sum; output += KD * pid->error_diff; pid->last_error = pid->error; return output; } // 检测传感器状态 uint8_t get_sensor_state(void); int main(void) { // 初始化PID控制器 pid_state_t pid; pid_init(&pid); // 循迹小车控制循环 while (1) { // 检测传感器状态 uint8_t sensor_state = get_sensor_state(); // 计算偏差值 float error = /* 根据传感器状态计算偏差值 */; // 更新PID控制器状态 pid.error = error; float output = pid_compute(&pid); // 根据PID输出控制车轮速度 /* 根据输出控制车轮速度 */ } } ``` 在这个示例中,我们使用了一个 `pid_state_t` 结构体来存储 PID 控制器的状态,其中包括当前偏差值、偏差值累加、偏差值差分和上一次偏差值。我们还定义了三个常量 `KP`、`KI` 和 `KD` 来设置比例、积分和微分项的权重。 在循迹小车的控制循环中,我们首先检测传感器状态,然后根据传感器状态计算偏差值。接着,我们更新 PID 控制器的状态,并通过调用 `pid_compute` 函数计算输出值。最后,根据输出值控制车轮速度,使车辆沿着轨迹行驶。 需要注意的是,这只是一个简单的示例,实际应用中需要根据具体的硬件和传感器进行调整。另外,循迹小车的控制循环还需要考虑避障、转向等因素,需要进一步完善和优化。

相关推荐

最新推荐

recommend-type

node-v4.8.6-win-x64.zip

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

基础运维技能(下)md格式笔记

基础运维技能(下)md格式笔记
recommend-type

node-v8.1.2-linux-armv7l.tar.xz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

黑马程序员 C语言学习笔记

持续更新
recommend-type

PCL-1.14.1-AllInOne-msvc2022-win64+pdb-msvc2022-win64

PCL-1.14.1-AllInOne-msvc2022-win64+pdb-msvc2022-win64
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

如何用python编写api接口

在Python中编写API接口可以使用多种框架,其中比较流行的有Flask和Django。这里以Flask框架为例,简单介绍如何编写API接口。 1. 安装Flask框架 使用pip命令安装Flask框架: ``` pip install flask ``` 2. 编写API接口 创建一个Python文件,例如app.py,编写以下代码: ```python from flask import Flask, jsonify app = Flask(__name__) @app.route('/api/hello', methods=['GET']) def hello():
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。