global max pooling

时间: 2023-04-25 07:06:20 浏览: 100
全局最大池化(global max pooling)是一种池化操作,它将输入张量的每个通道的最大值提取出来,形成一个新的张量。这个新的张量的形状是(batch_size, channels),其中batch_size是输入张量的批次大小,channels是输入张量的通道数。全局最大池化通常用于卷积神经网络的最后一层,将卷积层的输出转换为固定大小的向量,用于分类或回归任务。
相关问题

global average pooling是什么

Global average pooling是一种池化方法,用于将卷积神经网络的特征图降维成一个特征向量。它的操作是对每个特征图做平均,将每个通道的输出值取平均后得到一个标量,这样就可以将特征图降为一个向量。与传统的max pooling不同,global average pooling更注重特征的平均值,而不是最大值,因此可以更好地保留特征的整体信息。它在图像分类、目标检测和图像分割等任务中都有广泛应用。

Traceback (most recent call last): File "training.py", line 96, in <module> train(model, device, train_loader, optimizer, epoch+1) File "training.py", line 28, in train output = model(data) File "/home/qcui/anaconda3/envs/geometric/lib/python3.8/site-packages/torch/nn/modules/module.py", line 532, in __call__ result = self.forward(*input, **kwargs) File "/data/qcui/DTA/GraphDTA/ecfp_maccs_graph/CPI_prediction/models/gcn.py", line 64, in forward x = gmp(x, batch) # global max pooling File "/home/qcui/anaconda3/envs/geometric/lib/python3.8/site-packages/torch_geometric/nn/glob/glob.py", line 76, in global_max_pool return scatter(x, batch, dim=0, dim_size=size, reduce='max') File "/home/qcui/anaconda3/envs/geometric/lib/python3.8/site-packages/torch_scatter/scatter.py", line 155, in scatter return scatter_max(src, index, dim, out, dim_size)[0] RuntimeError: expected scalar type Long but found Float The above operation failed in interpreter. Traceback (most recent call last): File "/home/qcui/anaconda3/envs/geometric/lib/python3.8/site-packages/torch_scatter/scatter.py", line 69 dim_size: Optional[int] = None ) -> Tuple[torch.Tensor, torch.Tensor]: return torch.ops.torch_scatter.scatter_max(src, index, dim, out, dim_size) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <--- HERE

这是一个Python程序的错误信息,其中包含了一些文件名和行号。具体来说,这个错误信息显示了在训练模型时出现了错误,错误发生在第96行,train函数中的第28行调用了模型,但是模型的输入出现了问题,导致程序无法继续执行。具体的错误信息是在gcn.py文件的第64行,模型在进行计算时调用了gmp函数,但是输入的数据和batch信息有问题。

相关推荐

平均池化(Average Pooling)是一种计算图像区域平均值作为该区域池化后的值的操作。它保留了整体数据的特征,并能突出背景的信息。在平均池化中,每个区域的激活贡献相等,这可以显著降低整体区域特征的强度。全局平均池化(Global Average Pooling,GAP)是一种特殊的平均池化,它对整个特征图进行平均池化操作。\[1\] 在GPU上计算平均池化时,由于有大量的计算单元,使用队列反而会更低效。因此,常见的做法是对于每一个n,c维度上的池化单元,都使用单独的一个线程去负责实现。这样可以充分利用GPU上的计算资源。\[2\] 在平均池化中,权重与相应的激活值一起用作非线性变换。较高的激活比较低的激活占更多的主导地位。这是因为大多数池化操作都是在高维的特征空间中执行的,突出显示具有更大效果的激活比简单地选择最大值是一种更平衡的方法。具体的步骤是计算权重Wi,其中Wi是所有邻域内激活值加权求和的结果。然后,通过将权重与输入进行元素相乘,并进行平均池化操作,得到最终的池化结果。\[3\] 下面是一个示例代码,展示了如何实现平均池化操作: python def soft_pool2d(x, kernel_size=2, stride=None, force_inplace=False): if x.is_cuda and not force_inplace: return CUDA_SOFTPOOL2d.apply(x, kernel_size, stride) kernel_size = _pair(kernel_size) if stride is None: stride = kernel_size else: stride = _pair(stride) # 获取输入的大小 _, c, h, w = x.size() # 创建每个元素的指数值和:Tensor \[b x 1 x h x w\] e_x = torch.sum(torch.exp(x), dim=1, keepdim=True) # 对输入应用掩码并进行池化,并计算指数和 # Tensor: \[b x c x h x w\] -> \[b x c x h' x w'\] return F.avg_pool2d(x.mul(e_x), kernel_size, stride=stride).mul_(sum(kernel_size)).div_(F.avg_pool2d(e_x, kernel_size, stride=stride).mul_(sum(kernel_size))) 这段代码展示了如何使用PyTorch实现平均池化操作。它首先计算每个元素的指数和,然后将输入与指数和进行元素相乘,并进行平均池化操作,最后得到最终的池化结果。 #### 引用[.reference_title] - *1* *3* [池化操作average pooling、max pooling、SoftPool、Spatial Pyramid Pooling(SPP)](https://blog.csdn.net/weixin_42764932/article/details/112515715)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [关于maxpooling和avgpooling](https://blog.csdn.net/digitalbiscuitz/article/details/98481405)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
以下是使用 PyTorch 实现该卷积神经网络的代码: python import torch import torch.nn as nn class ConvNet(nn.Module): def __init__(self, num_classes=10): super(ConvNet, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=3, padding=1) self.bn1 = nn.BatchNorm2d(64) self.relu1 = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(64, 64, kernel_size=3, padding=1) self.bn2 = nn.BatchNorm2d(64) self.relu2 = nn.ReLU(inplace=True) self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv3 = nn.Conv2d(64, 128, kernel_size=3, padding=1) self.bn3 = nn.BatchNorm2d(128) self.relu3 = nn.ReLU(inplace=True) self.conv4 = nn.Conv2d(128, 128, kernel_size=3, padding=1) self.bn4 = nn.BatchNorm2d(128) self.relu4 = nn.ReLU(inplace=True) self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv5 = nn.Conv2d(128, 256, kernel_size=3, padding=1) self.bn5 = nn.BatchNorm2d(256) self.relu5 = nn.ReLU(inplace=True) self.conv6 = nn.Conv2d(256, 256, kernel_size=3, padding=1) self.bn6 = nn.BatchNorm2d(256) self.relu6 = nn.ReLU(inplace=True) self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(256, num_classes) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu1(x) x = self.conv2(x) x = self.bn2(x) x = self.relu2(x) x = self.pool1(x) x = self.conv3(x) x = self.bn3(x) x = self.relu3(x) x = self.conv4(x) x = self.bn4(x) x = self.relu4(x) x = self.pool2(x) x = self.conv5(x) x = self.bn5(x) x = self.relu5(x) x = self.conv6(x) x = self.bn6(x) x = self.relu6(x) x = self.pool3(x) x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.fc(x) return x 该网络实现了6个卷积层,每个卷积层后跟一个 Batch Normalization 和一个 ReLU 层,经过两个卷积层后,特征的空间分辨率降低两倍,特征的 channel 数量提升两倍。在最后的输出层,使用 Global Average Pooling 操作,把特征层转换为一个特征向量,然后使用全连接神经网络完成最终的预测。

def MEAN_Spot(opt): # channel 1 inputs1 = layers.Input(shape=(42,42,1)) conv1 = layers.Conv2D(3, (5,5), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs1) bn1 = layers.BatchNormalization()(conv1) pool1 = layers.MaxPooling2D(pool_size=(3, 3), padding='same', strides=(3,3))(bn1) do1 = layers.Dropout(0.3)(pool1) # channel 2 inputs2 = layers.Input(shape=(42,42,1)) conv2 = layers.Conv2D(3, (5,5), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs2) bn2 = layers.BatchNormalization()(conv2) pool2 = layers.MaxPooling2D(pool_size=(3, 3), padding='same', strides=(3,3))(bn2) do2 = layers.Dropout(0.3)(pool2) # channel 3 inputs3 = layers.Input(shape=(42,42,1)) conv3 = layers.Conv2D(8, (5,5), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs3) bn3 = layers.BatchNormalization()(conv3) pool3 = layers.MaxPooling2D(pool_size=(3, 3), padding='same', strides=(3,3))(bn3) do3 = layers.Dropout(0.3)(pool3) # merge 1 merged = layers.Concatenate()([do1, do2, do3]) # interpretation 1 merged_conv = layers.Conv2D(8, (5,5), padding='same', activation='relu', kernel_regularizer=l2(0.1))(merged) merged_pool = layers.MaxPooling2D(pool_size=(2, 2), padding='same', strides=(2,2))(merged_conv) flat = layers.Flatten()(merged_pool) flat_do = layers.Dropout(0.2)(flat) # outputs outputs = layers.Dense(1, activation='linear', name='spot')(flat_do) #Takes input u, v, os model = keras.models.Model(inputs=[inputs1, inputs2, inputs3], outputs=[outputs]) model.compile( loss={'spot':'mse'}, optimizer=opt, metrics={'spot':tf.keras.metrics.MeanAbsoluteError()}, ) return model 这段代码哪里可以加注意力机制

可以在merged_conv之后添加注意力机制,如下所示: python import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers def attention(inputs, filters): x = layers.GlobalAveragePooling2D()(inputs) x = layers.Dense(filters // 8, activation='relu')(x) x = layers.Dense(filters, activation='sigmoid')(x) x = layers.Reshape((1, 1, filters))(x) x = layers.Multiply()([inputs, x]) return x def MEAN_Spot(opt): # channel 1 inputs1 = layers.Input(shape=(42,42,1)) conv1 = layers.Conv2D(3, (5,5), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs1) bn1 = layers.BatchNormalization()(conv1) pool1 = layers.MaxPooling2D(pool_size=(3, 3), padding='same', strides=(3,3))(bn1) do1 = layers.Dropout(0.3)(pool1) # channel 2 inputs2 = layers.Input(shape=(42,42,1)) conv2 = layers.Conv2D(3, (5,5), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs2) bn2 = layers.BatchNormalization()(conv2) pool2 = layers.MaxPooling2D(pool_size=(3, 3), padding='same', strides=(3,3))(bn2) do2 = layers.Dropout(0.3)(pool2) # channel 3 inputs3 = layers.Input(shape=(42,42,1)) conv3 = layers.Conv2D(8, (5,5), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs3) bn3 = layers.BatchNormalization()(conv3) pool3 = layers.MaxPooling2D(pool_size=(3, 3), padding='same', strides=(3,3))(bn3) do3 = layers.Dropout(0.3)(pool3) # merge 1 merged = layers.Concatenate()([do1, do2, do3]) # attention attn = attention(merged, filters=8) # interpretation 1 merged_conv = layers.Conv2D(8, (5,5), padding='same', activation='relu', kernel_regularizer=l2(0.1))(attn) merged_pool = layers.MaxPooling2D(pool_size=(2, 2), padding='same', strides=(2,2))(merged_conv) flat = layers.Flatten()(merged_pool) flat_do = layers.Dropout(0.2)(flat) # outputs outputs = layers.Dense(1, activation='linear', name='spot')(flat_do) # Takes input u, v, os model = keras.models.Model(inputs=[inputs1, inputs2, inputs3], outputs=[outputs]) model.compile( loss={'spot':'mse'}, optimizer=opt, metrics={'spot':tf.keras.metrics.MeanAbsoluteError()}, ) return model 以上代码将注意力机制添加在了merged_conv之后,通过attention函数实现。注意力机制可以增强模型对于重要特征的关注,提高模型性能。

解析这段代码from keras.models import Sequential from keras.layers import Dense, Conv2D, Flatten, MaxPooling2D, Dropout, Activation, BatchNormalization from keras import backend as K from keras import optimizers, regularizers, Model from keras.applications import vgg19, densenet def generate_trashnet_model(input_shape, num_classes): # create model model = Sequential() # add model layers model.add(Conv2D(96, kernel_size=11, strides=4, activation='relu', input_shape=input_shape)) model.add(MaxPooling2D(pool_size=3, strides=2)) model.add(Conv2D(256, kernel_size=5, strides=1, activation='relu')) model.add(MaxPooling2D(pool_size=3, strides=2)) model.add(Conv2D(384, kernel_size=3, strides=1, activation='relu')) model.add(Conv2D(384, kernel_size=3, strides=1, activation='relu')) model.add(Conv2D(256, kernel_size=3, strides=1, activation='relu')) model.add(MaxPooling2D(pool_size=3, strides=2)) model.add(Flatten()) model.add(Dropout(0.5)) model.add(Dense(4096)) model.add(Activation(lambda x: K.relu(x, alpha=1e-3))) model.add(Dropout(0.5)) model.add(Dense(4096)) model.add(Activation(lambda x: K.relu(x, alpha=1e-3))) model.add(Dense(num_classes, activation="softmax")) # compile model using accuracy to measure model performance model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) return model # Generate model using a pretrained architecture substituting the fully connected layer def generate_transfer_model(input_shape, num_classes): # imports the pretrained model and discards the fc layer base_model = densenet.DenseNet121( include_top=False, weights='imagenet', input_tensor=None, input_shape=input_shape, pooling='max') #using max global pooling, no flatten required x = base_model.output #x = Dense(256, activation="relu")(x) x = Dense(256, activation="relu", kernel_regularizer=regularizers.l2(0.01))(x) x = Dropout(0.6)(x) x = BatchNormalization()(x) predictions = Dense(num_classes, activation="softmax")(x) # this is the model we will train model = Model(inputs=base_model.input, outputs=predictions) # compile model using accuracy to measure model performance and adam optimizer optimizer = optimizers.Adam(lr=0.001) #optimizer = optimizers.SGD(lr=0.0001, momentum=0.9, nesterov=True) model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy']) return model

def conv_block(inputs, filters): x = layers.BatchNormalization()(inputs) x = layers.Activation('relu')(x) x = layers.Conv2D(filters, 1, padding='same')(x) x = layers.BatchNormalization()(x) x = layers.Activation('relu')(x) x = layers.Conv2D(filters, 3, padding='same')(x) x = layers.Conv2D(filters, 1, padding='same')(x) return x def dense_block(inputs, filters, n_layers): x = inputs for i in range(n_layers): conv = conv_block(x, filters) x = layers.Concatenate()([x, conv]) return x def transition_block(inputs, compression): filters = int(inputs.shape[-1] * compression) x = layers.BatchNormalization()(inputs) x = layers.Activation('relu')(x) x = layers.Conv2D(filters, 1, padding='same')(x) x = layers.AveragePooling2D(2)(x) return x def Inception_block(inputs, filters): x1 = layers.Conv2D(filters, 1, padding='same', activation='relu')(inputs) x2 = layers.Conv2D(filters, 1, padding='same', activation='relu')(inputs) x2 = layers.Conv2D(filters, 3, padding='same', activation='relu')(x2) x3 = layers.Conv2D(filters, 1, padding='same', activation='relu')(inputs) x3 = layers.Conv2D(filters, 5, padding='same', activation='relu')(x3) x4 = layers.MaxPooling2D(3, strides=1, padding='same')(inputs) x4 = layers.Conv2D(filters, 1, padding='same', activation='relu')(x4) x = layers.Concatenate()([x1, x2, x3, x4]) return x inputs = keras.Input(shape=(224, 224, 3)) x = layers.Conv2D(64, 7, strides=2, padding='same')(inputs) x = layers.BatchNormalization()(x) x = layers.Activation('relu')(x) x = layers.MaxPooling2D(3, strides=2, padding='same')(x) x = dense_block(x, 32, 6) x = transition_block(x, 0.5) x = Inception_block(x, 64) x = dense_block(x, 32, 12) x = transition_block(x, 0.5) x = Inception_block(x, 128) x = dense_block(x, 32, 48) x = transition_block(x, 0.5) x = Inception_block(x, 256) x = layers.GlobalAveragePooling2D()(x) outputs = layers.Dense(10, activation='softmax')(x) model = keras.Model(inputs, outputs)这串代码有问题

这段代码并没有明显的语法错误,但是其中使用的函数和模块并未导入。需要在代码文件开头导入所需的模块和函数,例如: from tensorflow import keras from tensorflow.keras import layers def conv_block(inputs, filters): x = layers.BatchNormalization()(inputs) x = layers.Activation('relu')(x) x = layers.Conv2D(filters, 1, padding='same')(x) x = layers.BatchNormalization()(x) x = layers.Activation('relu')(x) x = layers.Conv2D(filters, 3, padding='same')(x) x = layers.Conv2D(filters, 1, padding='same')(x) return x def dense_block(inputs, filters, n_layers): x = inputs for i in range(n_layers): conv = conv_block(x, filters) x = layers.Concatenate()([x, conv]) return x def transition_block(inputs, compression): filters = int(inputs.shape[-1] * compression) x = layers.BatchNormalization()(inputs) x = layers.Activation('relu')(x) x = layers.Conv2D(filters, 1, padding='same')(x) x = layers.AveragePooling2D(2)(x) return x def Inception_block(inputs, filters): x1 = layers.Conv2D(filters, 1, padding='same', activation='relu')(inputs) x2 = layers.Conv2D(filters, 1, padding='same', activation='relu')(inputs) x2 = layers.Conv2D(filters, 3, padding='same', activation='relu')(x2) x3 = layers.Conv2D(filters, 1, padding='same', activation='relu')(inputs) x3 = layers.Conv2D(filters, 5, padding='same', activation='relu')(x3) x4 = layers.MaxPooling2D(3, strides=1, padding='same')(inputs) x4 = layers.Conv2D(filters, 1, padding='same', activation='relu')(x4) x = layers.Concatenate()([x1, x2, x3, x4]) return x inputs = keras.Input(shape=(224, 224, 3)) x = layers.Conv2D(64, 7, strides=2, padding='same')(inputs) x = layers.BatchNormalization()(x) x = layers.Activation('relu')(x) x = layers.MaxPooling2D(3, strides=2, padding='same')(x) x = dense_block(x, 32, 6) x = transition_block(x, 0.5) x = Inception_block(x, 64) x = dense_block(x, 32, 12) x = transition_block(x, 0.5) x = Inception_block(x, 128) x = dense_block(x, 32, 48) x = transition_block(x, 0.5) x = Inception_block(x, 256) x = layers.GlobalAveragePooling2D()(x) outputs = layers.Dense(10, activation='softmax')(x) model = keras.Model(inputs, outputs)

最新推荐

ns_strings_zh.xml

ns_strings_zh.xml

库房物品统计表.xlsx

库房物品统计表.xlsx

用于全志 SOC 的微型 FEL 工具

XFEL系列,用于全志 SOC 的微型 FEL 工具。

对销售记录进行高级筛选.xlsx

对销售记录进行高级筛选.xlsx

市场占有率预测.xlsx

市场占有率预测.xlsx

基于51单片机的usb键盘设计与实现(1).doc

基于51单片机的usb键盘设计与实现(1).doc

"海洋环境知识提取与表示:专用导航应用体系结构建模"

对海洋环境知识提取和表示的贡献引用此版本:迪厄多娜·察查。对海洋环境知识提取和表示的贡献:提出了一个专门用于导航应用的体系结构。建模和模拟。西布列塔尼大学-布雷斯特,2014年。法语。NNT:2014BRES0118。电话:02148222HAL ID:电话:02148222https://theses.hal.science/tel-02148222提交日期:2019年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire论文/西布列塔尼大学由布列塔尼欧洲大学盖章要获得标题西布列塔尼大学博士(博士)专业:计算机科学海洋科学博士学院对海洋环境知识的提取和表示的贡献体系结构的建议专用于应用程序导航。提交人迪厄多内·察察在联合研究单位编制(EA编号3634)海军学院

react中antd组件库里有个 rangepicker 我需要默认显示的当前月1号到最后一号的数据 要求选择不同月的时候 开始时间为一号 结束时间为选定的那个月的最后一号

你可以使用 RangePicker 的 defaultValue 属性来设置默认值。具体来说,你可以使用 moment.js 库来获取当前月份和最后一天的日期,然后将它们设置为 RangePicker 的 defaultValue。当用户选择不同的月份时,你可以在 onChange 回调中获取用户选择的月份,然后使用 moment.js 计算出该月份的第一天和最后一天,更新 RangePicker 的 value 属性。 以下是示例代码: ```jsx import { useState } from 'react'; import { DatePicker } from 'antd';

基于plc的楼宇恒压供水系统学位论文.doc

基于plc的楼宇恒压供水系统学位论文.doc

"用于对齐和识别的3D模型计算机视觉与模式识别"

表示用于对齐和识别的3D模型马蒂厄·奥布里引用此版本:马蒂厄·奥布里表示用于对齐和识别的3D模型计算机视觉与模式识别[cs.CV].巴黎高等师范学校,2015年。英语NNT:2015ENSU0006。电话:01160300v2HAL Id:tel-01160300https://theses.hal.science/tel-01160300v22018年4月11日提交HAL是一个多学科的开放获取档案馆,用于存放和传播科学研究文件,无论它们是否已这些文件可能来自法国或国外的教学和研究机构,或来自公共或私人研究中心。L’archive ouverte pluridisciplinaire博士之路博士之路博士之路在获得等级时,DOCTEURDE L'ÉCOLE NORMALE SUPERIEURE博士学校ED 386:巴黎中心数学科学Discipline ou spécialité:InformatiquePrésentée et soutenue par:马蒂厄·奥布里le8 may 2015滴度表示用于对齐和识别的Unité derechercheThèse dirigée par陪审团成员équipe WILLOW(CNRS/ENS/INRIA UMR 8548)慕尼黑工业大学(TU Munich�