scaler = StandardScaler(),对三维数组(n_samples, n_time_steps, n_features)转换为2维数组进行标准化,还原为3维数组
时间: 2024-03-27 09:41:42 浏览: 59
使用sklearn进行对数据标准化、归一化以及将数据还原的方法
可以通过以下方式将三维数组标准化为二维数组:
```python
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
# assume X is your 3D array with shape (n_samples, n_time_steps, n_features)
n_samples, n_time_steps, n_features = X.shape
# reshape X to 2D array
X_2d = X.reshape(n_samples * n_time_steps, n_features)
# standardize X_2d
X_2d_scaled = scaler.fit_transform(X_2d)
```
然后,可以通过以下方式将二维数组还原为三维数组:
```python
# inverse transform to get the original 2D array
X_2d_unscaled = scaler.inverse_transform(X_2d_scaled)
# reshape to the original 3D array
X_unscaled = X_2d_unscaled.reshape(n_samples, n_time_steps, n_features)
```
注意,在还原过程中,一定要使用和标准化时一样的`scaler`进行逆变换。
阅读全文