使用android studio开发一个能够调用手机摄像头进行人脸识别的app
时间: 2024-02-26 20:56:53 浏览: 162
好的,这是一个比较复杂的问题,需要详细的步骤说明,下面是大致的步骤:
1. 首先,需要在android studio中导入OpenCV库,可以在build.gradle文件中添加以下代码:
```
dependencies {
implementation 'org.opencv:opencv-android:3.4.3'
}
```
2. 在MainActivity.java中调用OpenCV库:
```
static {
if (OpenCVLoader.initDebug()) {
Log.d(TAG, "OpenCV loaded successfully");
} else {
Log.d(TAG, "OpenCV not loaded");
}
}
```
3. 接下来,需要在xml文件中添加一个SurfaceView,用于显示摄像头预览:
```
<SurfaceView
android:id="@+id/surfaceView"
android:layout_width="match_parent"
android:layout_height="match_parent" />
```
4. 在MainActivity.java中实现预览摄像头:
```
private SurfaceView surfaceView;
private Camera camera;
private int cameraId = 0;
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
surfaceView = findViewById(R.id.surfaceView);
camera = Camera.open(cameraId);
try {
camera.setPreviewDisplay(surfaceView.getHolder());
camera.startPreview();
} catch (IOException e) {
e.printStackTrace();
}
}
```
5. 然后,需要在MainActivity.java中实现人脸识别功能。可以使用OpenCV中的CascadeClassifier类实现人脸检测,代码如下:
```
private CascadeClassifier cascadeClassifier;
private Mat grayscaleImage;
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
cascadeClassifier = new CascadeClassifier();
cascadeClassifier.load(getDir("cascade", Context.MODE_PRIVATE).getAbsolutePath() + "/haarcascade_frontalface_alt.xml");
grayscaleImage = new Mat();
}
private Bitmap detectFaces(Bitmap bitmap) {
Mat image = new Mat();
Utils.bitmapToMat(bitmap, image);
Imgproc.cvtColor(image, grayscaleImage, Imgproc.COLOR_RGBA2GRAY);
Imgproc.equalizeHist(grayscaleImage, grayscaleImage);
MatOfRect faces = new MatOfRect();
cascadeClassifier.detectMultiScale(grayscaleImage, faces, 1.1, 2, 2,
new Size(absoluteFaceSize, absoluteFaceSize), new Size());
Rect[] facesArray = faces.toArray();
for (int i = 0; i < facesArray.length; i++) {
Imgproc.rectangle(image, facesArray[i].tl(), facesArray[i].br(), new Scalar(0, 255, 0, 255), 3);
}
Bitmap resultBitmap = Bitmap.createBitmap(image.cols(), image.rows(), Bitmap.Config.RGB_565);
Utils.matToBitmap(image, resultBitmap);
return resultBitmap;
}
```
6. 最后,在MainActivity.java中实现摄像头预览和人脸识别的整合:
```
private SurfaceView surfaceView;
private Camera camera;
private int cameraId = 0;
private CascadeClassifier cascadeClassifier;
private Mat grayscaleImage;
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
surfaceView = findViewById(R.id.surfaceView);
camera = Camera.open(cameraId);
try {
camera.setPreviewDisplay(surfaceView.getHolder());
camera.startPreview();
} catch (IOException e) {
e.printStackTrace();
}
cascadeClassifier = new CascadeClassifier();
cascadeClassifier.load(getDir("cascade", Context.MODE_PRIVATE).getAbsolutePath() + "/haarcascade_frontalface_alt.xml");
grayscaleImage = new Mat();
surfaceView.getHolder().addCallback(new SurfaceHolder.Callback() {
@Override
public void surfaceCreated(SurfaceHolder holder) {}
@Override
public void surfaceChanged(SurfaceHolder holder, int format, int width, int height) {}
@Override
public void surfaceDestroyed(SurfaceHolder holder) {}
});
camera.setPreviewCallback(new Camera.PreviewCallback() {
@Override
public void onPreviewFrame(byte[] data, Camera camera) {
Bitmap bitmap = BitmapFactory.decodeByteArray(data, 0, data.length);
Bitmap resultBitmap = detectFaces(bitmap);
surfaceView.draw(new BitmapDrawable(getResources(), resultBitmap));
}
});
}
private Bitmap detectFaces(Bitmap bitmap) {
Mat image = new Mat();
Utils.bitmapToMat(bitmap, image);
Imgproc.cvtColor(image, grayscaleImage, Imgproc.COLOR_RGBA2GRAY);
Imgproc.equalizeHist(grayscaleImage, grayscaleImage);
MatOfRect faces = new MatOfRect();
cascadeClassifier.detectMultiScale(grayscaleImage, faces, 1.1, 2, 2,
new Size(absoluteFaceSize, absoluteFaceSize), new Size());
Rect[] facesArray = faces.toArray();
for (int i = 0; i < facesArray.length; i++) {
Imgproc.rectangle(image, facesArray[i].tl(), facesArray[i].br(), new Scalar(0, 255, 0, 255), 3);
}
Bitmap resultBitmap = Bitmap.createBitmap(image.cols(), image.rows(), Bitmap.Config.RGB_565);
Utils.matToBitmap(image, resultBitmap);
return resultBitmap;
}
```
这样,就可以实现一个能够调用手机摄像头进行人脸识别的app了。当然,这只是一个简单的示例,实际应用中还需要考虑很多其他因素,比如性能优化、UI设计等等。
阅读全文