SpringBoot启动过程。

时间: 2023-11-19 15:23:14 浏览: 97
SpringBoot启动过程如下: 1. 加载SpringBoot配置文件:SpringBoot会先加载application.properties或application.yml文件中的配置信息,并创建SpringBoot应用程序的上下文环境。 2. 扫描应用程序中的组件:SpringBoot会扫描应用程序中的所有组件,包括控制器、服务、仓库等。 3. 自动配置Spring框架:SpringBoot会自动配置Spring框架的各个组件,包括数据源、事务管理器、日志框架等。 4. 启动嵌入式Web服务器:SpringBoot会启动嵌入式的Web服务器,比如Tomcat、Jetty等。同时,SpringBoot会加载Web应用程序的配置信息,包括DispatcherServlet、Filter、Listener等。 5. 运行应用程序:SpringBoot会将所有组件和配置信息整合在一起,启动应用程序,并监听HTTP请求的到来。当有请求到来时,SpringBoot会根据请求的URL找到对应的控制器方法,并将请求参数传递给该方法进行处理。最终,控制器方法会返回响应结果给客户端。 6. 关闭应用程序:当应用程序关闭时,SpringBoot会自动关闭嵌入式Web服务器,并释放资源。 总的来说,SpringBoot启动过程可以简单地概括为:加载配置文件、扫描组件、自动配置Spring框架、启动嵌入式Web服务器、运行应用程序。
相关问题

springboot启动过程

Spring Boot的启动过程可以分为以下几个步骤: 1. 加载配置:Spring Boot会加载application.properties(或application.yml)文件中的配置,并将其加载到环境变量中。 2. 扫描组件:Spring Boot会扫描项目中的所有组件,包括控制器、服务、仓库等,并将其注册到应用程序上下文中。 3. 自动配置:Spring Boot根据依赖和配置来自动配置项目。它会根据类路径上的依赖和配置文件的内容来决定哪些功能需要启用或禁用。 4. 创建应用程序上下文:Spring Boot会创建一个应用程序上下文,该上下文包含了所有已注册的组件。 5. 执行命令行运行器和应用程序启动监听器:Spring Boot会执行任何命令行运行器,并在应用程序启动完成后触发应用程序启动监听器。 6. 启动应用程序:Spring Boot会启动嵌入式的Web服务器(如Tomcat或Jetty),并将应用程序部署到该服务器上。 7. 应用程序运行:一旦Web服务器启动,Spring Boot应用程序就可以接收和处理传入的请求,并返回响应。 总的来说,Spring Boot的启动过程主要是加载配置、扫描组件、自动配置、创建应用程序上下文、执行命令行运行器和应用程序启动监听器,最后启动Web服务器并运行应用程序。

Springboot启动过程

Spring Boot 启动过程可以分为以下几个步骤: 1. 加载配置文件:Spring Boot 会加载 application.properties 或 application.yml 文件中的配置,这些配置文件可以放在 classpath 下的 /config 目录中,也可以是 / 目录下。 2. 启动 Spring 应用上下文:Spring Boot 会创建一个 Spring 应用上下文,将加载的配置文件和各种 Bean 加载到应用上下文中。 3. 扫描和加载 Bean:Spring Boot 会扫描应用程序的类路径中的 @Component、@Service、@Controller、@Repository 等注解标记的类,并将它们加载到 Spring 的应用上下文中。 4. 启动自动配置:Spring Boot 会根据 classpath 中的 jar 包、类、注解等信息,自动配置 Spring 应用程序上下文中需要的各种组件。 5. 启动 Tomcat(或其他 Web 容器):Spring Boot 会启动嵌入式的 Tomcat 容器,并将 Spring 应用上下文部署到 Tomcat 中。 6. 运行应用程序:Tomcat 启动后,Spring Boot 会启动 Web 应用程序,并将 HTTP 请求映射到相应的 Controller 上进行处理。
阅读全文

相关推荐

最新推荐

recommend-type

springboot整合netty过程详解

在整合SpringBoot和Netty的过程中,我们可能会遇到一些问题,例如Netty服务无法启动、网络IO事件处理不当等。这时,需要通过Debug和日志输出来定位问题所在,并逐步解决问题。 四、结论 SpringBoot与Netty的整合...
recommend-type

Tomcat启动springboot项目war包报错:启动子级时出错的问题

在Spring Boot应用部署到Tomcat服务器的过程中,遇到“启动子级时出错”的问题,这通常是由于多种原因导致的。以下是一些可能的原因和解决策略: 1. **配置错误**: - 检查`web.xml`配置,确保没有错误的配置项,...
recommend-type

SpringBoot多模块项目框架搭建过程解析

SpringBoot 多模块项目框架搭建过程解析 SpringBoot 多模块项目框架搭建过程解析是指使用 SpringBoot 框架来搭建多模块项目的过程。该过程主要涉及到项目结构的设计、模块之间的依赖关系、配置文件的设置等方面。在...
recommend-type

2023年第三届长三角数学建模c题考试题目.zip

2023年第三届长三角数学建模c题考试题目,可下载练习
recommend-type

基于人工智能的毕业设计辅助系统基础教程

随着人工智能技术的飞速发展,越来越多的学生和研究人员开始利用AI技术来辅助他们的毕业设计。本教程旨在指导读者如何开发一个基于人工智能的毕业设计辅助系统,帮助学生更高效地完成毕业设计任务。
recommend-type

平尾装配工作平台运输支撑系统设计与应用

资源摘要信息:"该压缩包文件名为‘行业分类-设备装置-用于平尾装配工作平台的运输支撑系统.zip’,虽然没有提供具体的标签信息,但通过文件标题可以推断出其内容涉及的是航空或者相关重工业领域内的设备装置。从标题来看,该文件集中讲述的是有关平尾装配工作平台的运输支撑系统,这是一种专门用于支撑和运输飞机平尾装配的特殊设备。 平尾,即水平尾翼,是飞机尾部的一个关键部件,它对于飞机的稳定性和控制性起到至关重要的作用。平尾的装配工作通常需要在一个特定的平台上进行,这个平台不仅要保证装配过程中平尾的稳定,还需要适应平尾的搬运和运输。因此,设计出一个合适的运输支撑系统对于提高装配效率和保障装配质量至关重要。 从‘用于平尾装配工作平台的运输支撑系统.pdf’这一文件名称可以推断,该PDF文档应该是详细介绍这种支撑系统的构造、工作原理、使用方法以及其在平尾装配工作中的应用。文档可能包括以下内容: 1. 支撑系统的设计理念:介绍支撑系统设计的基本出发点,如便于操作、稳定性高、强度大、适应性强等。可能涉及的工程学原理、材料学选择和整体结构布局等内容。 2. 结构组件介绍:详细介绍支撑系统的各个组成部分,包括支撑框架、稳定装置、传动机构、导向装置、固定装置等。对于每一个部件的功能、材料构成、制造工艺、耐腐蚀性以及与其他部件的连接方式等都会有详细的描述。 3. 工作原理和操作流程:解释运输支撑系统是如何在装配过程中起到支撑作用的,包括如何调整支撑点以适应不同重量和尺寸的平尾,以及如何进行运输和对接。操作流程部分可能会包含操作步骤、安全措施、维护保养等。 4. 应用案例分析:可能包含实际操作中遇到的问题和解决方案,或是对不同机型平尾装配过程的支撑系统应用案例的详细描述,以此展示系统的实用性和适应性。 5. 技术参数和性能指标:列出支撑系统的具体技术参数,如载重能力、尺寸规格、工作范围、可调节范围、耐用性和可靠性指标等,以供参考和评估。 6. 安全和维护指南:对于支撑系统的使用安全提供指导,包括操作安全、应急处理、日常维护、定期检查和故障排除等内容。 该支撑系统作为专门针对平尾装配而设计的设备,对于飞机制造企业来说,掌握其详细信息是提高生产效率和保障产品质量的重要一环。同时,这种支撑系统的设计和应用也体现了现代工业在专用设备制造方面追求高效、安全和精确的趋势。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB遗传算法探索:寻找随机性与确定性的平衡艺术

![MATLAB多种群遗传算法优化](https://img-blog.csdnimg.cn/39452a76c45b4193b4d88d1be16b01f1.png) # 1. 遗传算法的基本概念与起源 遗传算法(Genetic Algorithm, GA)是一种模拟自然选择和遗传学机制的搜索优化算法。起源于20世纪60年代末至70年代初,由John Holland及其学生和同事们在研究自适应系统时首次提出,其理论基础受到生物进化论的启发。遗传算法通过编码一个潜在解决方案的“基因”,构造初始种群,并通过选择、交叉(杂交)和变异等操作模拟生物进化过程,以迭代的方式不断优化和筛选出最适应环境的
recommend-type

如何在S7-200 SMART PLC中使用MB_Client指令实现Modbus TCP通信?请详细解释从连接建立到数据交换的完整步骤。

为了有效地掌握S7-200 SMART PLC中的MB_Client指令,以便实现Modbus TCP通信,建议参考《S7-200 SMART Modbus TCP教程:MB_Client指令与功能码详解》。本教程将引导您了解从连接建立到数据交换的整个过程,并详细解释每个步骤中的关键点。 参考资源链接:[S7-200 SMART Modbus TCP教程:MB_Client指令与功能码详解](https://wenku.csdn.net/doc/119yes2jcm?spm=1055.2569.3001.10343) 首先,确保您的S7-200 SMART CPU支持开放式用户通
recommend-type

MAX-MIN Ant System:用MATLAB解决旅行商问题

资源摘要信息:"Solve TSP by MMAS: Using MAX-MIN Ant System to solve Traveling Salesman Problem - matlab开发" 本资源为解决经典的旅行商问题(Traveling Salesman Problem, TSP)提供了一种基于蚁群算法(Ant Colony Optimization, ACO)的MAX-MIN蚁群系统(MAX-MIN Ant System, MMAS)的Matlab实现。旅行商问题是一个典型的优化问题,要求找到一条最短的路径,让旅行商访问每一个城市一次并返回起点。这个问题属于NP-hard问题,随着城市数量的增加,寻找最优解的难度急剧增加。 MAX-MIN Ant System是一种改进的蚁群优化算法,它在基本的蚁群算法的基础上,对信息素的更新规则进行了改进,以期避免过早收敛和局部最优的问题。MMAS算法通过限制信息素的上下界来确保算法的探索能力和避免过早收敛,它在某些情况下比经典的蚁群系统(Ant System, AS)和带有局部搜索的蚁群系统(Ant Colony System, ACS)更为有效。 在本Matlab实现中,用户可以通过调用ACO函数并传入一个TSP问题文件(例如"filename.tsp")来运行MMAS算法。该问题文件可以是任意的对称或非对称TSP实例,用户可以从特定的网站下载多种标准TSP问题实例,以供测试和研究使用。 使用此资源的用户需要注意,虽然该Matlab代码可以免费用于个人学习和研究目的,但若要用于商业用途,则需要联系作者获取相应的许可。作者的电子邮件地址为***。 此外,压缩包文件名为"MAX-MIN%20Ant%20System.zip",该压缩包包含Matlab代码文件和可能的示例数据文件。用户在使用之前需要将压缩包解压,并将文件放置在Matlab的适当工作目录中。 为了更好地理解和应用该资源,用户应当对蚁群优化算法有初步了解,尤其是对MAX-MIN蚁群系统的基本原理和运行机制有所掌握。此外,熟悉Matlab编程环境和拥有一定的编程经验将有助于用户根据个人需求修改和扩展算法。 在实际应用中,用户可以根据问题规模调整MMAS算法的参数,如蚂蚁数量、信息素蒸发率、信息素增量等,以获得最优的求解效果。此外,也可以结合其他启发式或元启发式算法,如遗传算法、模拟退火等,来进一步提高算法的性能。 总之,本资源为TSP问题的求解提供了一种有效的算法框架,且Matlab作为编程工具的易用性和强大的计算能力,使得该资源成为算法研究人员和工程技术人员的有力工具。通过本资源的应用,用户将能够深入探索并实现蚁群优化算法在实际问题中的应用,为解决复杂的优化问题提供一种新的思路和方法。