帮我看一下怎么打印这个方法返回的列表值 import xlrd "打开文件" def open_excel(): testcases=[] wb = xlrd.open_workbook('G:\\接口测试框架\\testpytest\data\\接口测试用例.xls') """ print('sheet的名称:', sheet.name) print('sheet的总行数:', sheet.nrows) print('sheet的总列数:', sheet.ncols) print('接口文档地址:', sheet.row_values(1)[0]) print('API地址:', sheet.row_values(2)) print('用例标题: ',sheet.row_values(3) ) """ sheet = wb.sheet_by_name('论坛接口') rownum = int(sheet.nrows) #print('接口测试用例:',sheet.cell_value()) for i in range(1,rownum): hh=dict(zip(sheet.row_values(0),sheet.row_values(i))) return testcases.append(hh) if __name__ =='__main__': open_excel() print()

时间: 2024-02-07 18:03:51 浏览: 86
ZIP

Read data from the Excel spreadsheet.zip_Spreadsheet::Read_excel

在这个代码中,你定义了一个名为 `open_excel` 的方法,这个方法会打开一个 Excel 文件,然后读取名为 `论坛接口` 的工作表中的数据,并将每一行的数据转换为字典格式,最后将字典添加到一个名为 `testcases` 的列表中。但是,你的代码有一个小问题,就是在 `return` 语句中,你应该先将字典添加到列表中,然后再返回列表。下面是修改后的代码: ```python import xlrd def open_excel(): testcases = [] wb = xlrd.open_workbook('G:\\接口测试框架\\testpytest\data\\接口测试用例.xls') sheet = wb.sheet_by_name('论坛接口') rownum = int(sheet.nrows) for i in range(1, rownum): hh = dict(zip(sheet.row_values(0), sheet.row_values(i))) testcases.append(hh) return testcases if __name__ == '__main__': testcases = open_excel() print(testcases) ``` 你可以直接调用 `open_excel` 函数,并将返回的 `testcases` 列表打印出来。
阅读全文

相关推荐

import requests from bs4 import BeautifulSoup import pandas as pd import xlrd # 读取Excel文件中的小区名字 def read_excel(filename): data = pd.read_excel(filename) return data['小区名'].tolist() # 爬取二手房数据 def crawl_data(area): print(area) print('1') url = 'https://wx.ke.com/ershoufang/rs'+area # 无锡二手房页面 headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36 Edge/16.16299' } params = { 'kw': area } response = requests.get(url, headers=headers, params=params) soup = BeautifulSoup(response.text, 'html.parser') # 解析页面数据 result = [] house_list = soup.find_all('div', class_='info clear') for house in house_list: title = house.find('div', class_='title').text.strip() address = house.find('div', class_='address').text.strip() house_Info = house.find('div', class_='houseInfo').text.strip() priceInfo = house.find('div', class_='priceInfo').text.strip() followInfo = house.find('div', class_='followInfo').text.strip() result.append({ 'title': title, 'address': address, 'house_info':house_Info, 'priceInfo':priceInfo, 'followInf':followInfo }) return result # 将数据保存到Excel文件中 def save_to_excel(data, filename): df = pd.DataFrame(data) df.to_excel(filename, index=False) # 主函数 if __name__ == '__main__': areas = read_excel('小区名.xlsx') for area in areas: print('正在爬取:', area) data = crawl_data(area) save_to_excel(data, area + '.xlsx') print('爬取完成!')

import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.svm import SVC from sklearn.metrics import accuracy_score, confusion_matrix import matplotlib.pyplot as plt import xlrd # 加载数据集并进行预处理 def load_data(filename): data = pd.read_excel(filename) data.dropna(inplace=True) X = data.drop('label', axis=1) X = (X - X.mean()) / X.std() y = data['label'] return X, y # 训练SVM分类器 def train_svm(X_train, y_train, kernel='rbf', C=1, gamma=0.1): clf = SVC(kernel=kernel, C=C, gamma=gamma) clf.fit(X_train, y_train) return clf # 预测新的excel文件并输出预测结果excel、精度和混淆矩阵图 def predict_svm(clf, X_test, y_test, filename, result_file): y_pred = clf.predict(X_test) accuracy = accuracy_score(y_test, y_pred) cm = confusion_matrix(y_test, y_pred) # 输出预测结果excel data = pd.read_excel(filename) data['predicted_label'] = pd.Series(y_pred, index=data.index) data.to_excel(result_file, index=False) # 绘制混淆矩阵图 plt.imshow(cm, cmap=plt.cm.Blues) plt.title('Confusion matrix') plt.colorbar() tick_marks = np.arange(len(set(y_test))) plt.xticks(tick_marks, sorted(set(y_test)), rotation=45) plt.yticks(tick_marks, sorted(set(y_test))) plt.xlabel('Predicted Label') plt.ylabel('True Label') plt.show() return accuracy # 加载数据集并划分训练集和验证集 data = pd.read_excel('data.xlsx') data.dropna(inplace=True) X = data.drop('label', axis=1) X = (X - X.mean()) / X.std() y = data['label'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 训练SVM分类器 clf = train_svm(X_train, y_train) # 预测新的excel文件 accuracy = predict_svm(clf, X_test, y_test, 'test_data.xlsx', 'predicted_result.xlsx') # 输出精度 print('Accuracy:', accuracy)修改代码,多个特征变量,一个目标变量进行预测

import numpy as npimport pandas as pdfrom sklearn.model_selection import train_test_splitfrom sklearn.svm import SVCfrom sklearn.metrics import accuracy_score, confusion_matriximport matplotlib.pyplot as pltimport xlrd# 加载数据集并进行预处理def load_data(filename): data = pd.read_excel(filename) data.dropna(inplace=True) X = data.drop('label', axis=1) X = (X - X.mean()) / X.std() y = data['label'] return X, y# 训练SVM分类器def train_svm(X_train, y_train, kernel='rbf', C=1, gamma=0.1): clf = SVC(kernel=kernel, C=C, gamma=gamma) clf.fit(X_train, y_train) return clf# 预测新的excel文件并输出预测结果excel、精度和混淆矩阵图def predict_svm(clf, X_test, y_test, filename): y_pred = clf.predict(X_test) accuracy = accuracy_score(y_test, y_pred) cm = confusion_matrix(y_test, y_pred) # 输出预测结果excel data = pd.read_excel(filename) data['predicted_label'] = pd.Series(y_pred, index=data.index) data.to_excel('predicted_result.xlsx', index=False) # 绘制混淆矩阵图 plt.imshow(cm, cmap=plt.cm.Blues) plt.title('Confusion matrix') plt.colorbar() tick_marks = np.arange(len(set(y_test))) plt.xticks(tick_marks, sorted(set(y_test)), rotation=45) plt.yticks(tick_marks, sorted(set(y_test))) plt.xlabel('Predicted Label') plt.ylabel('True Label') plt.show() return accuracy# 加载数据集并划分训练集和验证集data = pd.read_excel('data.xlsx')data.dropna(inplace=True)X = data.drop('label', axis=1)X = (X - X.mean()) / X.std()y = data['label']X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 训练SVM分类器clf = train_svm(X_train, y_train)# 预测新的excel文件accuracy = predict_svm(clf, X_test, y_test, 'test_data.xlsx')# 输出精度print('Accuracy:', accuracy)改进,预测新的结果输出在新表中

最新推荐

recommend-type

Python读取excel文件中带公式的值的实现

在Python中处理Excel文件时,有时我们需要读取含有公式的单元格的计算结果。这篇教程将详细讲解如何使用Python实现这一功能,特别关注如何处理包含公式的Excel单元格。 首先,我们通常会使用`xlrd`库来读取Excel...
recommend-type

Python3读写Excel文件(使用xlrd,xlsxwriter,openpyxl3种方式读写实例与优劣)

例如,通过`xlrd.open_workbook()`函数打开Excel文件,然后通过`sheet.cell_value()`获取特定单元格的值。然而,xlrd不支持写入操作,且对.xlsx格式支持有限。 2. **xlsxwriter**: 这个库专门用于创建新的Excel ....
recommend-type

python3读取excel文件只提取某些行某些列的值方法

Python提供了多个库来处理Excel文件,如pandas、openpyxl、xlrd等。本篇将聚焦于使用xlrd库来实现从Excel文件中提取特定行和列的值。xlrd是一个用于读取Excel文件的Python库,它不支持写入操作,但非常适合进行快速...
recommend-type

Python操作excel的方法总结(xlrd、xlwt、openpyxl)

通过`xlrd.open_workbook()` 方法可以打开Excel文件,然后使用`.sheets()` 获取工作表列表。工作表可以通过索引或名称访问,例如 `data.sheets()[0]` 或 `data.sheet_by_name('Sheet1')`。读取单元格数据可以用 `....
recommend-type

零基础使用Python读写处理Excel表格的方法

在这个例子中,`open_excel`函数用于打开指定路径的Excel文件并返回工作簿对象。`excel_table_byname`函数接收文件路径、列名索引和工作表名称,然后返回该工作表中的所有数据。主函数`main`调用这个函数,并打印出...
recommend-type

RStudio中集成Connections包以优化数据库连接管理

资源摘要信息:"connections:https" ### 标题解释 标题 "connections:https" 直接指向了数据库连接领域中的一个重要概念,即通过HTTP协议(HTTPS为安全版本)来建立与数据库的连接。在IT行业,特别是数据科学与分析、软件开发等领域,建立安全的数据库连接是日常工作的关键环节。此外,标题可能暗示了一个特定的R语言包或软件包,用于通过HTTP/HTTPS协议实现数据库连接。 ### 描述分析 描述中提到的 "connections" 是一个软件包,其主要目标是与R语言的DBI(数据库接口)兼容,并集成到RStudio IDE中。它使得R语言能够连接到数据库,尽管它不直接与RStudio的Connections窗格集成。这表明connections软件包是一个辅助工具,它简化了数据库连接的过程,但并没有改变RStudio的用户界面。 描述还提到connections包能够读取配置,并创建与RStudio的集成。这意味着用户可以在RStudio环境下更加便捷地管理数据库连接。此外,该包提供了将数据库连接和表对象固定为pins的功能,这有助于用户在不同的R会话中持续使用这些资源。 ### 功能介绍 connections包中两个主要的功能是 `connection_open()` 和可能被省略的 `c`。`connection_open()` 函数用于打开数据库连接。它提供了一个替代于 `dbConnect()` 函数的方法,但使用完全相同的参数,增加了自动打开RStudio中的Connections窗格的功能。这样的设计使得用户在使用R语言连接数据库时能有更直观和便捷的操作体验。 ### 安装说明 描述中还提供了安装connections包的命令。用户需要先安装remotes包,然后通过remotes包的`install_github()`函数安装connections包。由于connections包不在CRAN(综合R档案网络)上,所以需要使用GitHub仓库来安装,这也意味着用户将能够访问到该软件包的最新开发版本。 ### 标签解读 标签 "r rstudio pins database-connection connection-pane R" 包含了多个关键词: - "r" 指代R语言,一种广泛用于统计分析和图形表示的编程语言。 - "rstudio" 指代RStudio,一个流行的R语言开发环境。 - "pins" 指代R包pins,它可能与connections包一同使用,用于固定数据库连接和表对象。 - "database-connection" 指代数据库连接,即软件包要解决的核心问题。 - "connection-pane" 指代RStudio IDE中的Connections窗格,connections包旨在与之集成。 - "R" 代表R语言社区或R语言本身。 ### 压缩包文件名称列表分析 文件名称列表 "connections-master" 暗示了一个可能的GitHub仓库名称或文件夹名称。通常 "master" 分支代表了软件包或项目的稳定版或最新版,是大多数用户应该下载和使用的版本。 ### 总结 综上所述,connections包是一个专为R语言和RStudio IDE设计的软件包,旨在简化数据库连接过程并提供与Connections窗格的集成。它允许用户以一种更为方便的方式打开和管理数据库连接,而不直接提供与Connections窗格的集成。connections包通过读取配置文件和固定连接对象,增强了用户体验。安装connections包需通过remotes包从GitHub获取最新开发版本。标签信息显示了connections包与R语言、RStudio、数据库连接以及R社区的紧密联系。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Keil uVision5全面精通指南

# 摘要 Keil uVision5是一个集成开发环境,广泛应用于嵌入式系统的开发。本文从基础入门开始,详细介绍了Keil uVision5的项目管理、配置、编程实践、高级功能及技巧,并通过项目案例分析,深入阐述了其在实际开发中的应用。本篇论文特别注重于项目创建、目标配置、调试环境搭建、性能优化、脚本编程与自动化、高级调试技术,以及通过嵌入式操作系统集成和驱动开发流程的案例分析,展示了Keil uVision5的实用性和高效性。文章还展望了Keil uVision5的未来发展趋势,并提供了社区资源和学习渠道,为读者提供了一个全面掌握Keil uVision5的平台。 # 关键字 Keil u
recommend-type

flink提交给yarn19个全量同步MYsqlCDC的作业,flink的配置参数怎样设置

在Flink中,如果你需要将19个MySQL CDC(Change Data Capture)的全量同步作业提交到YARN上,你需要确保Flink集群和YARN进行了正确的集成,并配置了适当的参数。以下是可能涉及到的一些关键配置: 1. **并行度(Parallelism)**:每个作业的并行度应该设置得足够高,以便充分利用YARN提供的资源。例如,如果你有19个任务,你可以设置总并行度为19或者是一个更大的数,取决于集群规模。 ```yaml parallelism = 19 或者 根据实际资源调整 ``` 2. **YARN资源配置**:Flink通过`yarn.a
recommend-type

PHP博客旅游的探索之旅

资源摘要信息:"博客旅游" 博客旅游是一个以博客形式分享旅行经验和旅游信息的平台。随着互联网技术的发展和普及,博客作为一种个人在线日志的形式,已经成为人们分享生活点滴、专业知识、旅行体验等的重要途径。博客旅游正是结合了博客的个性化分享特点和旅游的探索性,让旅行爱好者可以记录自己的旅游足迹、分享旅游心得、提供目的地推荐和旅游攻略等。 在博客旅游中,旅行者可以是内容的创造者也可以是内容的消费者。作为创造者,旅行者可以通过博客记录下自己的旅行故事、拍摄的照片和视频、体验和评价各种旅游资源,如酒店、餐馆、景点等,还可以分享旅游小贴士、旅行日程规划等实用信息。作为消费者,其他潜在的旅行者可以通过阅读这些博客内容获得灵感、获取旅行建议,为自己的旅行做准备。 在技术层面,博客平台的构建往往涉及到多种编程语言和技术栈,例如本文件中提到的“PHP”。PHP是一种广泛使用的开源服务器端脚本语言,特别适合于网页开发,并可以嵌入到HTML中使用。使用PHP开发的博客旅游平台可以具有动态内容、用户交互和数据库管理等强大的功能。例如,通过PHP可以实现用户注册登录、博客内容的发布与管理、评论互动、图片和视频上传、博客文章的分类与搜索等功能。 开发一个功能完整的博客旅游平台,可能需要使用到以下几种PHP相关的技术和框架: 1. HTML/CSS/JavaScript:前端页面设计和用户交互的基础技术。 2. 数据库管理:如MySQL,用于存储用户信息、博客文章、评论等数据。 3. MVC框架:如Laravel或CodeIgniter,提供了一种组织代码和应用逻辑的结构化方式。 4. 服务器技术:如Apache或Nginx,作为PHP的运行环境。 5. 安全性考虑:需要实现数据加密、输入验证、防止跨站脚本攻击(XSS)等安全措施。 当创建博客旅游平台时,还需要考虑网站的可扩展性、用户体验、移动端适配、搜索引擎优化(SEO)等多方面因素。一个优质的博客旅游平台,不仅能够提供丰富的内容,还应该注重用户体验,包括页面加载速度、界面设计、内容的易于导航等。 此外,博客旅游平台还可以通过整合社交媒体功能,允许用户通过社交媒体账号登录、分享博客内容到社交网络,从而提升平台的互动性和可见度。 综上所述,博客旅游作为一个结合了旅行分享和在线日志的平台,对于旅行者来说,不仅是一个记录和分享旅行体验的地方,也是一个获取旅行信息、学习旅游知识的重要资源。而对于开发者来说,构建这样一个平台需要运用到多种技术和考虑多个技术细节,确保平台的功能性和用户体验。