翻译代码import numpy as np from cvxopt import matrix, solvers solvers.options['show_progress'] = False # 市场出清,考虑网络阻塞 def market_clearing(alpha): # 供给曲线的截距和斜率 a_real = np.array([15.0, 18.0]) b_real = np.array([0.01, 0.008]) # 需求曲线的截距和斜率 c_real = np.array([40.0, 40.0]) * -1 d_real = np.array([0.08, 0.06]) # 机组功率上下限 p_min = np.array([0.0, 0.0]) p_max = np.array([500.0, 500.0]) # 负荷需求上下限 q_min = np.zeros(2) q_max = np.array([500.0, 666.666666666667]) J_g = ([[-0.333333333333333, -0.333333333333333, -0.666666666666667], [0.333333333333334, -0.666666666666667, -0.333333333333333], [0, 0, 0]]) J = np.array([[-0.333333333333333, 0.0, 0.333333333333333, -0.333333333333334], [-0.333333333333333, 0.0, 0.333333333333333, 0.666666666666667], [-0.666666666666667, 0.0, 0.666666666666667, 0.333333333333333]]) J_max = np.array([25.0, 1000.0, 1000.0, 25.0, 1000.0, 1000.0]) P = matrix(np.diag(np.append(b_real, d_real))) q = matrix(np.append(alpha, c_real)) G = matrix(np.vstack((J, -J, np.diag(-np.ones(4)), np.diag(np.ones(4))))) h = matrix(np.hstack((J_max, -p_min, -q_min, p_max, q_max))) A = matrix(np.hstack((-np.ones(2), np.ones(2)))).T b = matrix(0.0) sv = solvers.qp(P, q, G, h, A, b) miu1 = sv['z'][0:3] miu2 = sv['z'][3:6] nodal_price = (np.ones((3, 1)) * sv['y'][0] - np.dot(J_g, miu1 - miu2)).squeeze() nodal_price_g = np.array([nodal_price[0], nodal_price[2]]) mc_amount = np.array(sv['x'][:2]).squeeze() cost_real = 0.5 * b_real * mc_amount ** 2 + a_real * mc_amount cost_declare = mc_amount * np.transpose(nodal_price_g) profit = cost_declare - cost_real return nodal_price_g, profit if __name__ == '__main__': alpha = np.array([20.29, 22.98]) print(market_clearing(alpha))
时间: 2024-01-23 18:03:36 浏览: 137
这段代码实现了一个市场出清的过程,用于计算电力市场中的供需关系和市场价格。具体来说,代码中有以下几个重要的变量和参数:
- a_real和b_real:表示供给曲线的截距和斜率,是一个长度为2的数组。
- c_real和d_real:表示需求曲线的截距和斜率,同样是一个长度为2的数组。
- p_min和p_max:表示机组功率的上下限,也是一个长度为2的数组。
- q_min和q_max:表示负荷需求的上下限,同样是一个长度为2的数组。
- J_g、J和J_max:都是用于计算市场价格的矩阵或数组。
- alpha:是一个长度为2的数组,表示供给和需求量的差异。
代码中使用了cvxopt库中的qp函数,通过定义P、q、G、h、A和b等矩阵,来求解最优化问题,得到了供给量和需求量的均衡点。最后,通过计算市场价格和成本等,得到了节点价格和利润的结果,并将其返回。
在主函数中,代码对market_clearing函数进行了测试,并输出了结果。
相关问题
import random import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn.metrics import silhouette_score from sklearn.decomposition import PCA plt.rcParams['font.sans-serif'] = ['SimHei'] dataset=pd.read_excel('C:\\Users\\86180\\Desktop\\第一次数学建模\\湘菜口感好物质.xlsx') dataset = dataset.drop(dataset.index[:1], inplace=False) dataset = dataset.drop(dataset.columns[:1], axis=1, inplace=False) #matrix=dataset.values matrix=np.array(dataset) matrix=matrix.T matrix_xiang=matrix[:27] # 将NaN值替换为0 matrix_xiang = np.nan_to_num(matrix_xiang) # 检测矩阵中是否还有NaN值 这个代码报错TypeError: ufunc 'isnan' not supported for the input types, and the inputs could not be safely coerced to any supported types according to the casting rule ''safe''应如何修改
根据您提供的代码,错误出在尝试检测矩阵中是否还有NaN值时。出现错误的原因可能是矩阵中的元素类型不符合`np.isnan()`函数的要求。
为了解决这个问题,您可以尝试使用`np.isnan()`函数之前,先将矩阵的元素类型转换为浮点类型(float),然后再进行检测。下面是修改后的代码:
```python
import random
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
from sklearn.decomposition import PCA
plt.rcParams['font.sans-serif'] = ['SimHei']
dataset = pd.read_excel('C:\\Users\\86180\\Desktop\\第一次数学建模\\湘菜口感好物质.xlsx')
dataset = dataset.drop(dataset.index[:1], inplace=False)
dataset = dataset.drop(dataset.columns[:1], axis=1, inplace=False)
matrix = np.array(dataset)
matrix = matrix.T
matrix_xiang = matrix[:27]
# 将NaN值替换为0
matrix_xiang = np.nan_to_num(matrix_xiang.astype(float))
# 检测矩阵中是否还有NaN值
has_nan = np.isnan(matrix_xiang).any()
if has_nan:
print("矩阵中存在NaN值")
else:
print("矩阵中没有NaN值")
```
在上述代码中,我使用`astype(float)`将矩阵的元素类型转换为浮点类型。然后,再对`matrix_xiang`进行NaN值的替换和检测。这样应该能够解决您遇到的问题。
import pandas as pdimport numpy as npimport noldsimport matplotlib.pyplot as plt# 读取csv文件df = pd.read_csv('data.csv', header=None)# 转换为numpy数组data = np.array(df[0])# 计算最大lyapunov指数和数max_lyap, _ = nolds.lyap_e(data, emb_dim=10, matrix_dim=2, maxt=100)# 打印结果print("最大lyapunov指数:", max_lyap)# 绘制时间序列图plt.plot(data)plt.show()上述代码报错如下TypeError: lyap_e() got an unexpected keyword argument 'maxt'请修改
根据 nolds 的官方文档,`lyap_e()` 函数并没有 `maxt` 这个参数,所以需要将该参数从函数调用中删除。修改后的代码如下:
```
import pandas as pd
import numpy as np
import nolds
import matplotlib.pyplot as plt
# 读取csv文件
df = pd.read_csv('data.csv', header=None)
# 转换为numpy数组
data = np.array(df[0])
# 计算最大lyapunov指数和数
max_lyap, _ = nolds.lyap_e(data, emb_dim=10, matrix_dim=2)
# 打印结果
print("最大lyapunov指数:", max_lyap)
# 绘制时间序列图
plt.plot(data)
plt.show()
```
阅读全文