使用空洞卷积识别minist数据集
时间: 2024-01-16 10:04:01 浏览: 74
创新发文基于多元宇宙优化算法MVO-DELM的多输入单输出预测Matlab实现.rar
5星 · 资源好评率100%
识别 MNIST 数据集可以使用空洞卷积(Dilated Convolution)来提高准确率。空洞卷积是卷积神经网络中的一种技术,它可以通过在卷积核中引入空洞来增加感受野,从而能够更好地学习图像中的全局信息。
以下是使用 PyTorch 实现空洞卷积识别 MNIST 数据集的示例代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
# 定义网络结构
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = nn.functional.relu(nn.functional.max_pool2d(self.conv1(x), 2))
x = nn.functional.relu(nn.functional.max_pool2d(self.conv2_drop(self.conv2(x)), 2, dilation=2))
x = x.view(-1, 320)
x = nn.functional.relu(self.fc1(x))
x = nn.functional.dropout(x, training=self.training)
x = self.fc2(x)
return nn.functional.log_softmax(x, dim=1)
# 加载数据集
train_dataset = datasets.MNIST('./data', train=True, download=True, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
]))
test_dataset = datasets.MNIST('./data', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
]))
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=1000, shuffle=True)
# 训练模型
model = Net()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
def train(epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
optimizer.zero_grad()
output = model(data)
loss = nn.functional.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % 100 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
def test():
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
output = model(data)
test_loss += nn.functional.nll_loss(output, target, reduction='sum').item()
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
for epoch in range(1, 11):
train(epoch)
test()
```
在这个示例代码中,我们定义了一个包含两个卷积层和两个全连接层的神经网络,其中第二个卷积层使用了空洞卷积,并且在最大池化层中的 dilation 参数设置为 2。我们使用 SGD 作为优化器,并且在每个 epoch 完成后进行测试。
阅读全文