Granger Causality number of lags (no zero) 1 ssr based F test: F=0.4805 , p=0.5106 , df_denom=7, df_num=1 ssr based chi2 test: chi2=0.6864 , p=0.4074 , df=1 likelihood ratio test: chi2=0.6638 , p=0.4152 , df=1 parameter F test: F=0.4805 , p=0.5106 , df_denom=7, df_num=1 Granger Causality number of lags (no zero) 2 ssr based F test: F=0.6001 , p=0.5917 , df_denom=4, df_num=2 ssr based chi2 test: chi2=2.7003 , p=0.2592 , df=2 likelihood ratio test: chi2=2.3615 , p=0.3071 , df=2 parameter F test: F=0.6001 , p=0.5917 , df_denom=4, df_num=2 Granger Causality number of lags (no zero) 3 ssr based F test: F=0.4331 , p=0.7741 , df_denom=1, df_num=3 ssr based chi2 test: chi2=10.3943 , p=0.0155 , df=3 likelihood ratio test: chi2=6.6608 , p=0.0835 , df=3 parameter F test: F=0.4331 , p=0.7741 , df_denom=1, df_num=3什么意思

时间: 2023-11-13 13:03:47 浏览: 19
这是关于格兰杰因果性检验的结果,格兰杰因果性检验是一种用于确定两个时间序列之间因果关系的统计方法。每个部分提供了有关不同滞后阶数的检验结果,其中包括SSR基于F检验、SSR基于卡方检验、似然比检验和参数F检验。每个结果都提供了F值或卡方值、p值和自由度等信息。在这些结果中,p值表示检验的显著性水平,如果p值小于设定的显著性水平,则可以拒绝原假设,即存在因果关系。如果p值大于设定的显著性水平,则无法拒绝原假设,即不存在因果关系。
相关问题

Granger Causality number of lags (no zero) 1 ssr based F test: F=0.4805 , p=0.5106 , df_denom=7, df_num=1 ssr based chi2 test: chi2=0.6864 , p=0.4074 , df=1 likelihood ratio test: chi2=0.6638 , p=0.4152 , df=1 parameter F test: F=0.4805 , p=0.5106 , df_denom=7, df_num=1 Granger Causality number of lags (no zero) 2 ssr based F test: F=0.6001 , p=0.5917 , df_denom=4, df_num=2 ssr based chi2 test: chi2=2.7003 , p=0.2592 , df=2 likelihood ratio test: chi2=2.3615 , p=0.3071 , df=2 parameter F test: F=0.6001 , p=0.5917 , df_denom=4, df_num=2

这段文字描述了一个格兰杰因果性检验(Granger Causality test),目的是检验两个时间序列之间是否存在因果关系。该检验分别对于滞后期为1和2的情况进行了检验,每种情况下给出了不同的统计指标,如ssr based F test,ssr based chi2 test,likelihood ratio test和parameter F test等。这些指标对应不同的假设检验方法和统计分布,如F分布和卡方分布等,同时也给出了相应的p值和自由度。最后的结论是,对于滞后期为1和2的情况,均未发现显著的因果关系。

granger_test = results.test_causality('0', ['1'], kind='f')如何修改设置延迟项

如果你想修改延迟项,可以在 `test_causality` 函数中增加 `lag_order` 参数。例如,如果你想增加延迟项,可以将 `lag_order` 设置为一个较大的数字,如: ``` granger_test = results.test_causality('0', ['1'], kind='f', lag_order=10) ``` 这将在因果关系检验中考虑 10 个滞后值。你可以根据你的数据和实际需求来调整这个参数。值得注意的是,增加滞后值可能会增加计算时间。

相关推荐

最新推荐

recommend-type

防雷及短路计算软件.zip

防雷及短路计算软件
recommend-type

电线穿管选用小软件.zip

电线穿管选用小软件
recommend-type

【小白python数据分析入门4Pandas可视化-板块8案例 2018幸福大数据】

小白python数据分析入门4Pandas可视化——板块8案例 2018幸福大数据,辅助8.1读取数据
recommend-type

电气照明照度计算软件.zip

电气照明照度计算软件
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

用matlab绘制高斯色噪声情况下的频率估计CRLB,其中w(n)是零均值高斯色噪声,w(n)=0.8*w(n-1)+e(n),e(n)服从零均值方差为se的高斯分布

以下是用matlab绘制高斯色噪声情况下频率估计CRLB的代码: ```matlab % 参数设置 N = 100; % 信号长度 se = 0.5; % 噪声方差 w = zeros(N,1); % 高斯色噪声 w(1) = randn(1)*sqrt(se); for n = 2:N w(n) = 0.8*w(n-1) + randn(1)*sqrt(se); end % 计算频率估计CRLB fs = 1; % 采样频率 df = 0.01; % 频率分辨率 f = 0:df:fs/2; % 频率范围 M = length(f); CRLB = zeros(M,1); for
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依