max30102心率血氧传感器stm32教学

时间: 2023-05-13 12:03:13 浏览: 73
MAX30102心率血氧传感器是一种集成多种传感技术的传感器,可以测量心率和血氧饱和度。它采用红外光和红外LED光源测量血氧饱和度,并通过一个可见光LED光源测量心率。MAX30102有两个LED光源,可以通过I2C接口进行控制和读取数据,它还可以通过其内置的运动检测算法来避免干扰并提供更精准的数据。 STM32是一系列由意法半导体公司生产的微控制器,它是一种高性能、低功耗的处理器,适用于各种应用。要使用MAX30102心率血氧传感器和STM32,需要先连接传感器到STM32芯片的引脚,然后编写控制程序来初始化传感器并读取数据。通常使用I2C总线协议来控制和读取数据,并使用串口将数据传送到计算机或其他设备。 一些常见的技术和工具可以用来教授如何使用MAX30102心率血氧传感器和STM32,例如Arduino IDE和相应的库、官方文档、官方代码示例和教程。在进行教学时,可以通过简单的示例程序来展示如何控制和读取传感器的数据,并且可以使用调试工具来验证读取的数据是否正确。此外,也可以通过一些实际应用来激发学生的兴趣,例如设计一个智能手环或医疗设备。 总之,MAX30102心率血氧传感器和STM32是一对很好的组合,可以用来实现各种应用。了解并掌握如何使用它们需要一定的编程和电子技术基础,但可以通过一些简单的示例和实际应用来学习和掌握。
相关问题

max30102心率血氧传感器例程stm32

### 回答1: MAX30102是一种集成了心率和血氧传感器的模块,适用于STM32微控制器。该模块采用了红外LED和光电二极管来测量血氧饱和度和心率。 在使用STM32微控制器进行MAX30102心率血氧传感器的例程时,我们首先需要进行引脚的连接。根据MAX30102的规格书,我们可以将模块的SDA引脚连接到STM32的对应GPIO引脚,SCL引脚连接到STM32的另外一个GPIO引脚。此外,还需要将模块的供电引脚连接到STM32的电源引脚,并确保电源电压和信号电平的兼容性。 一旦完成了引脚的连接,我们就可以开始编写例程代码了。首先,需要初始化I2C总线,并设置模块的地址。然后,可以设置MAX30102的工作模式,例如设置为连续采样模式。接下来,我们可以配置模块的其他参数,例如设置红外LED的功率和采样速率。 在数据读取方面,我们可以通过I2C总线读取模块内置的寄存器来获取心率和血氧饱和度的数据。通常情况下,可以通过读取红光和红外光的强度,并采用一定的算法来计算心率和血氧饱和度的数值。 最后,我们可以将获得的数据传输到显示设备,例如LCD屏幕或串口终端,以进行实时的心率和血氧饱和度监测。 ### 回答2: MAX30102是一种高度集成的心率血氧传感器,广泛应用于健康监测和医疗领域。 针对STM32微控制器平台,可以使用不同的例程进行MAX30102的控制和数据获取。 在STM32上使用MAX30102传感器的例程可以分为以下几个步骤: 1. 硬件连接:将MAX30102传感器与STM32微控制器连接。使用I2C或SPI接口连接的方式均可,根据具体的硬件连接方式进行正确的引脚连接。 2. 初始化配置:在STM32的程序中,通过写入适当的配置值来完成MAX30102传感器的初始化设置。例如,设置采样速率、LED功率以及滤波器设置等。 3. 读取数据:通过I2C或SPI总线,从MAX30102传感器读取心率和血氧浓度数据。可以设置不同的采样率和数据输出格式来满足应用需求。 4. 数据处理和显示:通过使用适当的算法和数据处理技术,对从MAX30102传感器读取到的原始数据进行处理,计算心率和血氧浓度,并将结果显示在相关的显示设备上,例如液晶显示屏。 5. 处理异常情况:在使用MAX30102传感器时,可能会遇到一些异常情况,例如传感器失效、采样错误等。在例程中需要添加相应的错误处理代码,以保证系统的可靠性和稳定性。 总结起来,MAX30102心率血氧传感器例程可以通过硬件连接、初始化配置、数据读取、数据处理和显示等步骤完成。通过使用STM32微控制器提供的丰富的功能和灵活性,可以实现对MAX30102传感器的完整控制和数据获取。

max30102心率血氧传感器与stm32的io口连接

### 回答1: Max30102心率血氧传感器与STM32的IO口连接步骤如下: 1. 将Max30102的VIN引脚连接到STM32的3.3V引脚,将GND引脚连接到STM32的GND引脚。 2. 将Max30102的SCL引脚连接到STM32的I2C SCL引脚,将SDA引脚连接到STM32的I2C SDA引脚。 3. 在STM32中使用I2C接口读取Max30102的数据。 注意事项: 1. 在连接时,请确认STM32和Max30102的电压和电流是否匹配。 2. 在写代码时,需要使用正确的I2C地址和读写模式。 3. 在使用Max30102之前,请确保正确的初始化和校准。 ### 回答2: max30102心率血氧传感器可以通过IO口与STM32单片机连接。连接过程需要注意一些步骤。 首先,需要理解max30102的IO口连接方式。max30102传感器通常使用I2C接口进行数据传输和控制。在连接过程中,需要将max30102的SCL引脚连接到STM32的SCL引脚,并将max30102的SDA引脚连接到STM32的SDA引脚。此外,还需要连接max30102的VCC引脚到STM32的电源引脚,将max30102的GND引脚连接到STM32的地引脚。 其次,需要编写代码来实现数据传输和控制。首先,在STM32上初始化I2C接口,设置STM32的SCL和SDA引脚作为I2C功能引脚,并设置相应的时钟和数据速率。然后,通过发送I2C命令和读取返回的数据,与max30102进行通信。可以使用STM32的I2C库或编程库来简化编码过程。 接下来,需要将获取到的心率和血氧数据进行处理和存储。一般来说,max30102会连续采集心率和血氧数据,并通过I2C接口传输给STM32。STM32可以通过读取I2C缓冲区中的数据来获取采集到的心率和血氧值。然后,可以根据实际需求对数据进行处理,如计算平均值、储存到存储设备或发送到其他设备。 最后,需要关闭I2C接口并释放相关资源。在使用完max30102传感器后,应该关闭STM32上的I2C接口,释放相关资源。这样可以避免资源占用和数据传输中的错误。 总之,将max30102心率血氧传感器与STM32的IO口连接,在硬件层面上进行正确的引脚连接。然后,在软件层面上通过编写代码实现数据传输和控制。接下来,对采集到的数据进行处理和存储。最后,在使用完毕后关闭I2C接口并释放相关资源。这样就可以实现max30102心率血氧传感器与STM32的IO口连接。 ### 回答3: MAX30102是一种集成心率和血氧监测功能的传感器,而STM32则是一种广泛应用于嵌入式系统中的微控制器。要将MAX30102传感器与STM32的IO口连接,我们需要进行以下步骤: 首先,我们需要确定MAX30102传感器的引脚功能和STM32的IO引脚资源。MAX30102有六个引脚,其中包括VIN(电源输入),3V3(3.3V电源),SDA(数据线),SCL(时钟线),INT(中断线)和GND(地线)。相应地,STM32也有一些IO引脚可供我们使用。 接下来,我们需要将MAX30102的VIN引脚连接到STM32的3.3V电源引脚上,将GND引脚连接到STM32的地引脚上,将SDA引脚连接到STM32的I2C数据线引脚上,将SCL引脚连接到STM32的I2C时钟线引脚上,将INT引脚连接到STM32的可编程IO引脚上。 在硬件连接完成后,我们需要在STM32的软件程序中配置I2C接口。首先,我们需要启用STM32的I2C外设,然后配置I2C的时钟频率和地址。接下来,我们可以通过编写相应的程序代码来访问MAX30102传感器的寄存器,读取心率和血氧数据。我们可以使用STM32的I2C库函数来发送读取和写入数据的命令。通过读取MAX30102的寄存器,我们可以获取传感器返回的心率和血氧值。 综上所述,将MAX30102心率血氧传感器与STM32的IO口连接需要进行正确的硬件连接,并在STM32的软件程序中配置相应的I2C接口。通过这种连接方式,我们可以读取MAX30102传感器返回的心率和血氧数据,实现对健康状况的监测和分析。

相关推荐

MAX30102是一款集成了心率和血氧测量功能的传感器。在STM32中读取MAX30102数据需要使用I2C通信协议。 以下是一个简单的代码示例,在STM32中使用HAL库读取MAX30102的心率和血氧数据: c #include "stm32f1xx_hal.h" #define MAX30102_I2C_ADDRESS 0xAE I2C_HandleTypeDef hi2c1; void MAX30102_init(void) { uint8_t config[2]; /* 初始化I2C */ hi2c1.Instance = I2C1; hi2c1.Init.ClockSpeed = 100000; hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2; hi2c1.Init.OwnAddress1 = 0; hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT; hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE; hi2c1.Init.OwnAddress2 = 0; hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE; hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE; if (HAL_I2C_Init(&hi2c1) != HAL_OK) { Error_Handler(); } /* 配置MAX30102 */ config[0] = 0x06; // 寄存器地址 config[1] = 0x03; // 配置寄存器值 HAL_I2C_Master_Transmit(&hi2c1, MAX30102_I2C_ADDRESS, config, 2, 1000); // 写入配置寄存器 } void MAX30102_read_data(uint16_t *heart_rate, uint16_t *spo2) { uint8_t data[6]; uint32_t red_led, ir_led; /* 读取数据 */ data[0] = 0x0F; // 寄存器地址 HAL_I2C_Master_Transmit(&hi2c1, MAX30102_I2C_ADDRESS, data, 1, 1000); // 发送读取命令 HAL_I2C_Master_Receive(&hi2c1, MAX30102_I2C_ADDRESS, data, 6, 1000); // 读取6个字节的数据 /* 计算心率和血氧 */ red_led = (data[0] << 16) | (data[1] << 8) | data[2]; // 红光LED数据 ir_led = (data[3] << 16) | (data[4] << 8) | data[5]; // 红外LED数据 // TODO: 根据红光LED和红外LED数据计算心率和血氧 // 将计算结果存储在heart_rate和spo2变量中 } int main(void) { uint16_t heart_rate, spo2; HAL_Init(); MAX30102_init(); while (1) { MAX30102_read_data(&heart_rate, &spo2); // TODO: 处理心率和血氧数据 } } 需要注意的是,这只是一个简单的示例代码,实际应用中还需要根据数据手册计算心率和血氧值。
抱歉,由于本人并不是STM32F103c8t6和MAX30102的专家,因此无法为您提供完整的程序。不过,我可以为您提供一些相关的资源和指导,以帮助您开始编写此类程序。 首先,您需要了解STM32F103c8t6和MAX30102的基本功能和通信接口。MAX30102是一种集成了红外LED和光电传感器的血氧和心率监测芯片,可以通过I2C接口与STM32F103c8t6进行通信。 在编写程序之前,您需要准备好开发环境。我建议您使用Keil uVision或者STM32CubeIDE进行开发。这些IDE都提供了对STM32F103c8t6的支持,并且可以轻松地配置和编译您的程序。 下面是一个简单的例子,展示了如何使用STM32F103c8t6和MAX30102进行血氧和心率测量: c #include "stm32f10x.h" #include "max30102.h" #define MAX30102_ADDRESS 0xAE void i2c_init(void) { // 初始化I2C总线 } void max30102_init(void) { // 初始化MAX30102芯片 } void max30102_read_data(uint8_t *buffer, uint8_t length) { // 从MAX30102芯片读取数据 } void max30102_write_data(uint8_t *buffer, uint8_t length) { // 向MAX30102芯片写入数据 } int main(void) { uint8_t buffer[6]; uint16_t ir, red; // 初始化I2C总线和MAX30102芯片 i2c_init(); max30102_init(); while (1) { // 读取红外和红色光信号 max30102_read_data(buffer, 6); ir = buffer[0] << 8 | buffer[1]; red = buffer[3] << 8 | buffer[4]; // 计算血氧和心率 // ... // 等待一段时间 Delay(1000); } } 在上面的代码中,您需要实现 i2c_init()、max30102_init()、max30102_read_data() 和 max30102_write_data() 函数,以便与MAX30102芯片进行通信。您还需要添加代码来计算血氧和心率,这部分代码需要根据您的具体应用来实现。 希望这些信息可以帮助您开始编写STM32F103c8t6和MAX30102测量血氧和心率的程序。
可以使用以下代码实现: c #include <Wire.h> #include <Adafruit_Sensor.h> #include <Adafruit_MAX30102.h> #include <ESP8266WiFi.h> #include // WiFi信息 const char* ssid = "your_SSID"; const char* password = "your_PASSWORD"; // 阿里云信息 const char* mqtt_server = "your_MQTT_SERVER"; const char* mqtt_username = "your_MQTT_USERNAME"; const char* mqtt_password = "your_MQTT_PASSWORD"; const char* mqtt_topic = "your_MQTT_TOPIC"; // WiFi客户端和MQTT客户端 WiFiClient espClient; PubSubClient client(espClient); // 心率血氧传感器 Adafruit_MAX30102 particleSensor; void setup() { // 初始化串口 Serial.begin(115200); // 初始化WiFi WiFi.begin(ssid, password); while (WiFi.status() != WL_CONNECTED) { delay(1000); Serial.println("Connecting to WiFi..."); } Serial.println("Connected to WiFi"); // 初始化MQTT客户端 client.setServer(mqtt_server, 1883); client.setCallback(callback); // 初始化心率血氧传感器 if (!particleSensor.begin(Wire, I2C_SPEED_FAST)) { Serial.println("MAX30102 not found"); while (1); } particleSensor.setup(); particleSensor.setPulseAmplitudeRed(0x0A); particleSensor.setPulseAmplitudeGreen(0); } void loop() { // 连接MQTT服务器 if (!client.connected()) { reconnect(); } client.loop(); // 读取心率和血氧浓度 float hr = particleSensor.getHeartRate(); float spo2 = particleSensor.getSpO2(); // 发送数据到阿里云 char message[50]; sprintf(message, "{\"hr\":%.2f,\"spo2\":%.2f}", hr, spo2); client.publish(mqtt_topic, message); // 打印数据到串口 Serial.print("Heart rate: "); Serial.print(hr); Serial.print(" bpm, SpO2: "); Serial.print(spo2); Serial.println(" %"); // 延时1秒 delay(1000); } void callback(char* topic, byte* payload, unsigned int length) { // 处理MQTT消息 } void reconnect() { // 重新连接MQTT服务器 while (!client.connected()) { Serial.println("Connecting to MQTT..."); if (client.connect("ESP8266Client", mqtt_username, mqtt_password)) { Serial.println("Connected to MQTT"); client.subscribe(mqtt_topic); } else { Serial.print("Failed to connect to MQTT, rc="); Serial.print(client.state()); Serial.println(" retrying in 5 seconds"); delay(5000); } } } 注意:在使用这段代码之前,你需要先在阿里云上创建一个MQTT实例,并且在代码中填写正确的WiFi信息、阿里云信息和MQTT主题。
### 回答1: Max30102是一种集成了心率和血氧饱和度测量模块的传感器。STM32是意法半导体公司生产的一种微控制器。 要使Max30102与STM32连接,可以按照以下步骤进行: 1. 硬件连接:首先,将Max30102模块按照其引脚定义连接到STM32微控制器。根据Max30102和STM32的引脚图,将它们的相应引脚连接在一起。通常,Max30102模块具有供电引脚、I2C(或SPI)通信引脚和中断引脚。需要将它们连接到STM32微控制器的相应引脚。 2. 驱动程序设置:接下来,需要配置STM32的相应外设驱动程序,以允许与Max30102进行通信。这可以通过使用STM32的软件开发工具和驱动库来完成。例如,可以使用STM32CubeMX工具来配置I2C外设,并为该外设分配相应的引脚。然后,使用STM32 HAL库中的函数来初始化和设置I2C通信。 3. I2C通信:使用STM32的I2C驱动程序,可以通过I2C总线与Max30102进行通信。通过发送适当的命令和数据,可以从Max30102读取心率和血氧饱和度测量结果。这些测量结果可以在STM32中进行处理和显示,或者通过其他外设进行进一步的处理和存储。 4. 中断控制:Max30102模块通常具有中断引脚,用于指示测量结果的可用性。可以使用STM32的中断控制功能来监控此引脚的状态,并根据需要进行适当的处理。例如,当中断引脚触发时,可以立即读取测量结果并立即对其进行处理。 总之,通过硬件连接、驱动程序设置、I2C通信和中断控制,可以实现Max30102与STM32的连接。这样就可以利用Max30102传感器获取心率和血氧饱和度等生物参数,并利用STM32微控制器进行数据处理和显示。 ### 回答2: MAX30102是一款高度集成的心率传感器和血氧饱和度传感器。要将MAX30102与STM32微控制器连接,您需要按照以下步骤进行操作: 1. 准备所需的硬件:MAX30102模块和STM32微控制器。 2. 确保您已获得MAX30102的数据手册和STM32微控制器的参考手册,以便理解它们的引脚定义和功能。 3. 链接电源:将MAX30102的供电引脚连接至STM32微控制器的电源引脚。确保两者的工作电压兼容。 4. 连接串行接口:根据MAX30102和STM32微控制器的规格要求,将它们的串行接口(如I2C或SPI)引脚进行连接。通常,MAX30102与STM32之间使用I2C接口进行通信。 5. 确定I2C地址:检查MAX30102模块的数据手册,找到I2C地址的配置方法。在STM32上设置正确的I2C地址以确保与MAX30102的通信正常进行。 6. 初始化I2C通信:在STM32的代码中,使用相应的函数库来初始化I2C总线,并设置通信参数。 7. 读取和处理传感器数据:通过I2C通信协议,编码STM32的代码以读取MAX30102模块的传感器数据。您可以根据应用需求对这些数据进行进一步的处理。 8. 编写相应的控制逻辑:根据您的应用要求,编写适当的控制逻辑,以便控制MAX30102模块的工作模式和功能。 9. 调试和测试:通过使用调试工具和适当的测试方法,确保MAX30102和STM32微控制器之间的连接和通信正常工作。 完成以上步骤后,您就可以成功地将MAX30102和STM32微控制器连接起来,并开始进行心率和血氧饱和度的检测和处理。 ### 回答3: Max30102是一款集成了心率和血氧传感器的模块,而STM32是一款常用的微控制器。将Max30102模块和STM32微控制器连接,可以实现心率和血氧的监测和数据处理。 首先,需要使用合适的线缆将Max30102模块与STM32微控制器连接起来。一般来说,可以使用I2C或SPI通信协议进行连接。在连接时,需要确保正确连接相应的引脚,如时钟线、数据线、地线等。 然后,在STM32的开发环境中,通过编写代码,配置和初始化相应的I2C或SPI通信模块。这样,STM32就能够通过通信模块与Max30102模块进行数据交换。 一旦成功连接,STM32可以发送命令给Max30102模块,以读取心率和血氧浓度的数据。Max30102模块将采集到的数据通过I2C或SPI总线发送给STM32。STM32可以使用相应的函数进行数据的接收和处理。 在数据处理方面,STM32可以根据需要,将接收到的原始心率和血氧数据进行滤波、计算和分析。可以使用适当的算法来处理数据,例如实时心率计算算法或血氧水平评估算法。 最后,STM32可以将处理后的数据显示在显示屏上,或者将数据传输给其他设备进行进一步的存储和分析。 总之,通过将Max30102模块与STM32微控制器相连接,可以实现心率和血氧监测的功能,为健康管理提供了便利。

最新推荐

MAX30102心率血氧传感器在STM32F103C8T6上的应用

标准库与HAL库,用IO口模拟IIC void I2C_GPIO_Config(void) //IIC引脚初始化 { #ifdef STDLIB GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2PeriphClockCmd&#40;RCC_APB2Periph_GPIOB , ENABLE&#41;...

来凯医药(02105.HK)深度研究报告:Afuresertib有望美国报产,ActRIIA单抗增肌减脂潜力巨大.pdf

行业研究

代码随想录最新第三版-最强八股文

这份PDF就是最强⼋股⽂! 1. C++ C++基础、C++ STL、C++泛型编程、C++11新特性、《Effective STL》 2. Java Java基础、Java内存模型、Java面向对象、Java集合体系、接口、Lambda表达式、类加载机制、内部类、代理类、Java并发、JVM、Java后端编译、Spring 3. Go defer底层原理、goroutine、select实现机制 4. 算法学习 数组、链表、回溯算法、贪心算法、动态规划、二叉树、排序算法、数据结构 5. 计算机基础 操作系统、数据库、计算机网络、设计模式、Linux、计算机系统 6. 前端学习 浏览器、JavaScript、CSS、HTML、React、VUE 7. 面经分享 字节、美团Java面、百度、京东、暑期实习...... 8. 编程常识 9. 问答精华 10.总结与经验分享 ......

基于交叉模态对应的可见-红外人脸识别及其表现评估

12046通过调整学习:基于交叉模态对应的可见-红外人脸识别Hyunjong Park*Sanghoon Lee*Junghyup Lee Bumsub Ham†延世大学电气与电子工程学院https://cvlab.yonsei.ac.kr/projects/LbA摘要我们解决的问题,可见光红外人重新识别(VI-reID),即,检索一组人的图像,由可见光或红外摄像机,在交叉模态设置。VI-reID中的两个主要挑战是跨人图像的类内变化,以及可见光和红外图像之间的跨模态假设人图像被粗略地对准,先前的方法尝试学习在不同模态上是有区别的和可概括的粗略的图像或刚性的部分级人表示然而,通常由现成的对象检测器裁剪的人物图像不一定是良好对准的,这分散了辨别性人物表示学习。在本文中,我们介绍了一种新的特征学习框架,以统一的方式解决这些问题。为此,我们建议利用密集的对应关系之间的跨模态的人的形象,年龄。这允许解决像素级中�

麒麟v10 arm64 安装curl

麒麟v10是一种arm64架构的操作系统,因此可以使用curl命令进行安装。您可以按照以下步骤在麒麟v10 arm64上安装curl: 1. 打开终端或命令行界面。 2. 执行以下命令安装curl: ``` sudo apt-get update sudo apt-get install curl ``` 安装完成后,您就可以在麒麟v10 arm64系统上使用curl命令了。

数据结构1800试题.pdf

你还在苦苦寻找数据结构的题目吗?这里刚刚上传了一份数据结构共1800道试题,轻松解决期末挂科的难题。不信?你下载看看,这里是纯题目,你下载了再来私信我答案。按数据结构教材分章节,每一章节都有选择题、或有判断题、填空题、算法设计题及应用题,题型丰富多样,共五种类型题目。本学期已过去一半,相信你数据结构叶已经学得差不多了,是时候拿题来练练手了,如果你考研,更需要这份1800道题来巩固自己的基础及攻克重点难点。现在下载,不早不晚,越往后拖,越到后面,你身边的人就越卷,甚至卷得达到你无法想象的程度。我也是曾经遇到过这样的人,学习,练题,就要趁现在,不然到时你都不知道要刷数据结构题好还是高数、工数、大英,或是算法题?学完理论要及时巩固知识内容才是王道!记住!!!下载了来要答案(v:zywcv1220)。

通用跨域检索的泛化能力

12056通用跨域检索:跨类和跨域的泛化2* Soka Soka酒店,Soka-马上预订;1印度理工学院,Kharagpur,2印度科学学院,班加罗尔soumava2016@gmail.com,{titird,somabiswas} @ iisc.ac.in摘要在这项工作中,我们第一次解决了通用跨域检索的问题,其中测试数据可以属于在训练过程中看不到的类或域。由于动态增加的类别数量和对每个可能的域的训练的实际约束,这需要大量的数据,所以对看不见的类别和域的泛化是重要的。为了实现这一目标,我们提出了SnMpNet(语义Neighbourhood和混合预测网络),它包括两个新的损失,以占在测试过程中遇到的看不见的类和域。具体来说,我们引入了一种新的语义邻域损失,以弥合可见和不可见类之间的知识差距,并确保潜在的空间嵌入的不可见类是语义上有意义的,相对于其相邻的类。我们还在图像级以及数据的语义级引入了基于混�

jupyter notebook安装spsspro库

要在Jupyter Notebook中安装spsspro库,可以按照以下步骤进行操作: 1. 打开Jupyter Notebook,创建一个新的笔记本或打开一个已有的笔记本。 2. 在笔记本的代码单元格中输入以下命令,并运行它们: ``` !pip install spsspro ``` 这将使用pip安装spsspro库。 3. 当安装完成后,您可以在笔记本中导入spsspro库并使用它了。

TFT屏幕-ILI9486数据手册带命令标签版.pdf

ILI9486手册 官方手册 ILI9486 is a 262,144-color single-chip SoC driver for a-Si TFT liquid crystal display with resolution of 320RGBx480 dots, comprising a 960-channel source driver, a 480-channel gate driver, 345,600bytes GRAM for graphic data of 320RGBx480 dots, and power supply circuit. The ILI9486 supports parallel CPU 8-/9-/16-/18-bit data bus interface and 3-/4-line serial peripheral interfaces (SPI). The ILI9486 is also compliant with RGB (16-/18-bit) data bus for video image display. For high speed serial interface, the ILI9486 also provides one data and clock lane and supports up to 500Mbps on MIPI DSI link. And also support MDDI interface.

生成模型的反事实解释方法及其局限性

693694不能很好地可视化/解释非空间定位的属性,如大小、颜色等。此外,它们可以显示图像的哪些区域可以被改变以影响分类,但不显示它们应该如何被改变。反事实解释通过提供替代输入来解决这些限制,其中改变一小组属性并且观察到不同的分类结果。生成模型是产生视觉反事实解释的自然候选者,事实上,最近的工作已经朝着这个目标取得了进展在[31,7,32,1]中,产生了生成的反事实解释,但它们的可视化立即改变了所有相关属性,如图所示。二、[29]中提供的另一种相关方法是使用来自分类器的深度表示来以不同粒度操纵生成的图像然而,这些可能涉及不影响分类结果的性质,并且还组合了若干属性。因此,这些方法不允许根据原子属性及其对分类的影响来其他解释方法使用属性生成反事实,其中可以对所需属性进行完全或部分监督[10,5