n <- 10000000 p <- 10 x <- matrix(rnorm(n*p),ncol = p) # n行p列的随机矩阵x,其中每个元素都服从标准正态分布 beta <- matrix(c(1:p),ncol = 1) # p行1列的系数矩阵beta,其中第i个元素为i z <- x %*% beta # x与beta的矩阵乘积 condprob <- pnorm(z) # 计算二项式分布的概率参数condprob,即每个观测值y为1的概率 y <- matrix(rbinom(n,size = 1,prob = condprob),ncol = 1) # n行1列的随机矩阵y,其中每个元素都服从二项式分布 prob.fit <- glm.fit(x,y,family = binomial(link = "probit"))$coefficients # probit建模 logit.fit <- glm.fit(x,y,family = binomial(link = "logit"))$coefficients # logit建模 linear.fit <- glm.fit(x,y,family = gaussian(link = "identity"))$coefficients # 线性回归建模 coef.mat <- cbind(prob.fit,logit.fit,linear.fit) # 将三个模型的系数矩阵按列合并为一个p行3列的矩阵coef.mat print(coef.mat) prop.mat <- cbind(prob.fit/logit.fit,prob.fit/linear.fit,logit.fit/linear.fit) # 计算三个模型系数之间的比例,并将它们按列合并为一个p行3列的矩阵prop.mat print(prop.mat)
时间: 2024-04-23 14:22:30 浏览: 90
最简单最实用的R语言热图绘制教程(没有R基础-掌握只需10min)
这是一段使用R语言进行二项式回归、logistic回归和线性回归的代码。其中,n为样本量,p为自变量个数,x是从标准正态分布中随机生成的样本数据,beta是一个1到p的向量,z是x和beta的点积,condprob是z的累积分布函数值,y是从二项分布中生成的响应变量。
接下来,使用三种不同的link函数,分别对y和x进行回归拟合,并输出各个系数的值。最后,将三个模型的系数进行比较得到prop.mat。
如果您想使用其他语言或库进行回归分析,可以将代码中的glm函数替换为对应语言或库中的线性回归、逻辑回归或概率模型函数。
阅读全文