hashjoin源码 sortmergejoin源码

时间: 2023-07-05 09:07:11 浏览: 116
这里提供 PostgreSQL 数据库中 hash join 和 sort merge join 实现的相关源码,仅供参考: Hash Join 实现源码: ```c /* * ExecHashJoin * Implements the hashjoin algorithm. * * Returns the join relation. * * Parallel version: we distribute the outer relation into a number of * partitions with a hash function, and process each partition * independently of the others. The inner relation is replicated to * all workers, so that each can perform the join independently. * This works best if the inner relation is smaller than the outer. */ static TupleTableSlot * ExecHashJoin(PlanState *pstate) { HashJoinState *node = castNode(HashJoinState, pstate); ExprContext *econtext = node->js.ps.ps_ExprContext; TupleTableSlot *slot; CHECK_FOR_INTERRUPTS(); /* * If we're still building the hash table, do that, else fetch the current * batch of outer tuples to probe the existing hash table. */ if (!node->hj_JoinState) ExecBuildHashTable(node); else node->hj_OuterTupleSlot = ExecProcNode(outerPlanState(node)); /* * Now loop, returning join tuples as we find them. */ for (;;) { CHECK_FOR_INTERRUPTS(); /* * If we don't have an outer tuple, get the next one and reset our * state machine for new tuple. */ if (TupIsNull(node->hj_OuterTupleSlot)) { if (!ExecScanHashTableForUnmatched(node)) { /* no more unmatched tuples */ return NULL; } /* Found unmatched outer, so compute its hash value */ ResetExprContext(econtext); econtext->ecxt_outertuple = node->hj_OuterTupleSlot; node->hj_CurHashValue = ExecHashGetHashValue(node->hj_HashTable, econtext, node->hj_OuterHashKeys); node->hj_JoinState = HJ_NEED_NEW_OUTER; /* * Now we have an outer tuple and its hash value. */ } /* inner loop over all matching inner tuples */ while (node->hj_JoinState != HJ_NEED_NEW_OUTER) { /* Fetch next tuple from inner side */ slot = ExecScanHashTable(node); /* if there are no more inner tuples... */ if (TupIsNull(slot)) { node->hj_JoinState = HJ_NEED_NEW_OUTER; break; /* ... out of inner loop */ } /* we have a new join tuple, return it */ econtext->ecxt_innertuple = slot; return ExecProject(node->js.ps.ps_ProjInfo); } } } ``` Sort Merge Join 实现源码: ```c /* * ExecSortMergeJoin * Implements the sort/merge join algorithm. * * Returns the join relation. * * Parallel version: we distribute the outer relation into a number of * partitions with a hash function, and sort the inner relation on the * join key. We then perform the join independently for each partition, * with each worker performing the merge join of its partition with the * sorted inner relation. */ static TupleTableSlot * ExecSortMergeJoin(PlanState *pstate) { SortMergeJoinState *node = castNode(SortMergeJoinState, pstate); ExprContext *econtext = node->js.ps.ps_ExprContext; TupleTableSlot *slot; CHECK_FOR_INTERRUPTS(); /* First call? */ if (node->smj_JoinState == SMJ_STARTUP) { PlanState *outerNode; PlanState *innerNode; List *inInfo; ListCell *l; List *outInfo; AttrNumber *match; int nMatch; /* * We need to do some initialization for outer and inner nodes. Also, * we figure out which join keys are being used, and build equality * operators for them. */ outerNode = outerPlanState(node); innerNode = innerPlanState(node); inInfo = innerNode->plan->targetlist; outInfo = outerNode->plan->targetlist; nMatch = 0; match = palloc(list_length(node->smj_MergingClauses) * sizeof(AttrNumber)); foreach(l, node->smj_MergingClauses) { OpExpr *clause = (OpExpr *) lfirst(l); Var *innerVar; Var *outerVar; Oid eqop; /* * Currently, only "simple" cross-type comparisons work. See * comments in src/backend/utils/adt/genfile.c. */ if (!is_simple_eq_op(clause->opno)) ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("mergejoin operator must be a btree equality operator"))); innerVar = (Var *) get_leftop((Expr *) clause); outerVar = (Var *) get_rightop((Expr *) clause); /* We don't need to output these columns in the result */ innerVar->varno = INNER_VAR; outerVar->varno = OUTER_VAR; /* * We may have to look up the operator___ in the opfamily to check that * it is compatible with sorting. */ eqop = get_opfamily_member(clause->opfamily, innerVar->vartype, outerVar->vartype, BTEqualStrategyNumber); if (eqop == InvalidOid) elog(ERROR, "no operator___ matching clause"); match[nMatch] = outInfo ? ExecFindMatchingJoinVar(outerVar, outInfo) : ExecFindMatchingJoinVar(innerVar, inInfo); nMatch++; } node->js.ps.ps_ExprContext->ecxt_per_tuple_memory = node->smj_RuntimeContext; ExecAssignExprContext(node->js.ps.ps_ExprContext, outerNode->parent); /* * Initialize tuplesort state variables used in merging phase, and in * state where we're reading inner relation. */ node->smj_OuterSkipQual = ExecInitQual(node->js.ps.qual, outerNode); node->smj_InnerSkipQual = ExecInitQual(node->js.ps.qual, innerNode); node->smj_MatchedOuter = false; node->smj_MatchedInner = false; node->smj_OuterTupleSlot = ExecProcNode(outerNode); if (TupIsNull(node->smj_OuterTupleSlot)) { /* empty outer relation */ node->smj_JoinState = SMJ_NEEDS_INNER; return NULL; } node->smj_SortKeys = ExecBuildSortKey(node, inInfo, outInfo, match, nMatch); /* can't handle non-heap tuplesort methods here */ if (!node->smj_SortKeys->abbrev_converter && node->smj_PresortedKeys == NIL) node->smj_SortStates[0] = tuplesort_begin_merge(node->smj_SortKeys->sortFunction, node->smj_WorkMem, node->ssps_TempFileSpaces, node->smj_SortKeys->abbrev_full_comparator, node); else node->smj_SortStates[0] = tuplesort_begin_datum(node->smj_SortKeys->sortFunction, node->smj_SortKeys->abbrev_converter, node->smj_SortKeys->abbrev_full_comparator, node->smj_WorkMem, node->ssps_TempFileSpaces, node); /* * Begin scanning the inner relation. We'll read tuples in sorted * order, so the main loop will be able to use a simple and fast * algorithm for advancing the outer relation and resetting the inner * scan. */ node->smj_JoinState = SMJ_NEEDS_INNER; node->smj_MatchedOuter = false; node->smj_MatchedInner = false; /* * Set up tuplestore and materialize the inner relation. We only need to * materialize the inner relation if we are in a parallel plan. */ if (node->js.ps.plan->parallel_aware) { Assert(node->js.ps.ps_ExecProcNode == ExecSortMergeJoin); node->smj_InnerTupleSlot = outerNode->ps_ResultTupleSlot; /* * If we are in a parallel plan, and if the inner side of this join * was not fully gathered (because it was too large), then we must * materialize the inner tuples before proceeding with the join. */ if (outerNode->ps_Flow->flotype == FLOW_REPLICATE && innerNode->ps_Flow->flotype == FLOW_PARTITIONED && !innerNode->ps_Flow->initialized) { Assert(innerNode->ps_ResultTupleSlot->tts_tupleDescriptor != NULL); /* Create tuplestore to store the entire inner relation. */ node->ss.ps.ps_TupFromTlist = false; node->ss.ps.ps_ProjInfo = NULL; node->ss.ps.ps_ExprContext = node->js.ps.ps_ExprContext; node->ss.ps.ps_TupSlot = tuplestore_begin_heap(false, false, work_mem); node->ss.ps.ps_ResultTupleSlot = node->smj_InnerTupleSlot; node->ss.ps.ps_ProjInfo = NULL; /* Materialize all inner tuples. */ while (!TupIsNull(slot = ExecProcNode(innerNode))) { tuplestore_puttupleslot(node->ss.ps.ps_TupSlot, slot); } /* Seek back to start of the materialized inner relation. */ tuplestore_rescan(node->ss.ps.ps_TupSlot); } else { /* * If the inner side is fully gathered (i.e., if it is a * shared-nothing table), then we can simply use the existing * outer slot as the inner slot as well. */ node->smj_InnerTupleSlot = node->smj_OuterTupleSlot; } } else { node->smj_InnerTupleSlot = ExecProcNode(innerNode); /* if empty inner relation, advance to next outer tuple */ if (TupIsNull(node->smj_InnerTupleSlot)) node->smj_JoinState = SMJ_NEEDS_OUTER; } } /* * The main loop advances the outer scan, possibly reinitializing the * inner scan, and checks for matches between outer tuples and inner * tuples. */ for (;;) { CHECK_FOR_INTERRUPTS(); switch (node->smj_JoinState) { case SMJ_NEEDS_INNER: /* Reset the inner scan. */ if (node->js.ps.plan->parallel_aware) { /* * If we are in a parallel plan, and if the inner side of * this join was not fully gathered (because it was too * large), then we must read from the materialized inner * relation that was created earlier. We have to switch to * the other worker's partition if we've reached the end of * our own. Otherwise, we can simply rescan the materialized * inner relation. */ if (outerPlanState(node)->ps_Flow->flotype == FLOW_REPLICATE && innerPlanState(node)->ps_Flow->flotype == FLOW_PARTITIONED && !innerPlanState(node)->ps_Flow->initialized) { if (node->ss.ps.ps_TupSlot && !tuplestore_gettupleslot(node->ss.ps.ps_TupSlot, true, false, node->smj_InnerTupleSlot)) { /* * We've reached the end of our own partition, but * there may be more partitions. Advance to the * next partition by updating our slice table entry * and resetting the tuplestore so that we can read * from the new partition. If there are no more * partitions, we're done. */ if (!ExecParallelUpdatePartitionInfo(node, true)) { node->smj_JoinState = SMJ_NEEDS_OUTER; break; } tuplestore_clear(node->ss.ps.ps_TupSlot); tuplestore_rescan(node->ss.ps.ps_TupSlot); continue; } } else { /* * If the inner side is fully gathered (i.e., if it is * a shared-nothing table), then we can simply rescan * the existing outer slot as the inner slot as well. */ ExecClearTuple(node->smj_InnerTupleSlot); tuplestore_rescan(node->ss.ps.ps_TupSlot); } } else { /* advance inner scan */ ExecClearTuple(node->smj_InnerTupleSlot); node->smj_InnerTupleSlot = ExecProcNode(innerPlanState(node)); } if (TupIsNull(node->smj_InnerTupleSlot)) { /* end of inner scan */ node->smj_JoinState = SMJ_NEEDS_OUTER; break; } /* * We know the new inner tuple is not distinct from the last one * returned, so we update matched_inner accordingly. */ node->smj_MatchedInner = true; /* * Set up the state for matching tuples. */ ResetExprContext(econtext); econtext->ecxt_innertuple = node->smj_InnerTupleSlot; econtext->ecxt_outertuple = node->smj_OuterTupleSlot; /* Skip non-matching tuples based on previously established * skip qual */ if (node->smj_InnerSkipQual) { ExprState *qualexpr = node->smj_InnerSkipQual; if (!ExecQual(qualexpr, econtext)) { /* not matched */ continue; } } /* * Now we check the merge condition(s). */ if (ExecQualAndReset(node->smj_MergeClauses, econtext)) { /* matched */ node->smj_JoinState = SMJ_JOINEDMATCHING; return ExecProject(node->js.ps.ps_ProjInfo); } /* * Not joined, so try next tuple from inner side. */ break; case SMJ_JOINEDMATCHING: case SMJ_JOINEDNONMATCHING: /* Try to advance inner-side tuple */ ExecClearTuple(node->smj_InnerTupleSlot); node->smj_InnerTupleSlot = ExecProcNode(innerPlanState(node)); if (TupIsNull(node->smj_InnerTupleSlot)) { /* end of inner scan */ if (node->smj_JoinState == SMJ_JOINEDMATCHING) { node->smj_JoinState = SMJ_NEEDS_INNER; node->smj_MatchedInner = false; /* try to fetch next outer tuple */ ExecClearTuple(node->smj_OuterTupleSlot); node->smj_OuterTupleSlot = ExecProcNode(outerPlanState(node)); if (TupIsNull(node->smj_OuterTupleSlot)) { /* end of outer scan */ node->smj_JoinState = SMJ_NEEDS_INNER; break; } } else { node->smj_JoinState = SMJ_NEEDS_OUTER; break; } } node->smj_MatchedInner = false; /* * Set up the state for matching tuples. */ ResetExprContext(econtext); econtext->ecxt_innertuple = node->smj_InnerTupleSlot; econtext->ecxt_outertuple = node->smj_OuterTupleSlot; /* Skip non-matching tuples based on previously established * skip qual */ if (node->smj_InnerSkipQual) { ExprState *qualexpr = node->smj_InnerSkipQual; if (!ExecQual(qualexpr, econtext)) { /* not matched */ continue; } } /* * Now we check the merge condition(s). */ if (ExecQualAndReset(node->smj_MergeClauses, econtext)) { /* matched */ node->smj_MatchedInner = true; node->smj_JoinState = SMJ_JOINEDMATCHING; return ExecProject(node->js.ps.ps_ProjInfo); } /* * Not joined, so try again with next tuple from inner side. */ break; case SMJ_NEEDS_OUTER: /* Try to advance outer-side tuple */ ExecClearTuple(node->smj_OuterTupleSlot); node->smj_OuterTupleSlot = ExecProcNode(outerPlanState(node)); if (TupIsNull(node->smj_OuterTupleSlot)) { /* end of outer scan */ node->smj_JoinState = SMJ_NEEDS_INNER; break; } /* * New outer tuple; try to match it to first inner tuple. */ node->smj_JoinState = SMJ_FIRST_INNER; /* FALL THRU */ case SMJ_FIRST_INNER: /* * We know the new outer tuple is not distinct from the last one * returned, so we update matched_outer accordingly. */ node->smj_MatchedOuter = true; /* * Set up the state for matching tuples. */ ResetExprContext(econtext); econtext->ecxt_innertuple = node->smj_InnerTupleSlot; econtext->ecxt_outertuple = node->smj_OuterTupleSlot; /* Skip non-matching tuples based on previously established * skip qual */ if (node->smj_OuterSkipQual) { ExprState *qualexpr = node->smj_OuterSkipQual; if (!ExecQual(qualexpr, econtext)) { /* not
阅读全文

相关推荐

最新推荐

recommend-type

筷子系统源码筷子视频制作部份源码展示

《筷子系统源码与筷子视频制作技术解析》 在当今数字化时代,短视频制作已经成为内容创作者、电商从业者以及营销团队不可或缺的工具。筷子系统源码,作为一款专为短视频制作优化的解决方案,以其智能化的视频处理...
recommend-type

详解Docker源码编译安装

在深入探讨Docker源码编译安装之前,我们首先需要理解Docker是什么。Docker是一个开源的应用容器引擎,它基于Go语言并遵循Apache2.0协议开源。Docker可以让开发者打包他们的应用以及依赖包到一个可移植的容器中,...
recommend-type

snort源码笔记分析

这篇文章主要探讨了Snort的源码分析,特别是规则解析、数据结构以及编译过程。 Snort 的规则解析涉及多个数据结构,如规则主链表、OTN (Option Tree Node) 和 RTN (Rule Token Node)。OTN 存储规则选项的信息,而 ...
recommend-type

linphone源码分析.docx

《深入剖析Linphone源码分析》 Linphone是一款开源的VoIP软电话应用程序,它基于SIP协议,实现了音视频通话的功能。对于开发者而言,理解其源码有助于深入掌握网络通信、音视频编解码以及SIP协议等相关技术。本文将...
recommend-type

开源Ceph10.2.1源码分析.docx

- **CollectionIndex**:提供索引功能,如HashIndex和LFNIndex。 10. **Ceph纠删码**: - **EC原理**:通过编码技术,用较少的冗余数据来保护大量原始数据。 - **不同插件**:如RS、LRC和SHEC编码,各有优缺点,...
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"