解释s_mean = bsize.view(-1, 3, 2).float().mean(dim=1)
时间: 2023-10-22 09:08:31 浏览: 55
这行代码主要是对一个三维张量bsize进行操作。
- 首先,使用.view(-1, 3, 2)将bsize的形状变为一个三维张量,其中第一维的长度为-1表示自适应长度,第二维的长度为3,第三维的长度为2。
- 然后,使用.float()将bsize中的元素转换为浮点型数值。
- 最后,使用.mean(dim=1)对第二维进行求平均,得到一个形状为(-1,2)的二维张量,其中第一维的长度为-1表示自适应长度,第二维的长度为2。该结果表示对于每个bsize中的三个2维向量,分别取它们的平均值,得到一个新的2维向量。
相关问题
解释bs_mean = bsize.view(-1, 3, 2).float().mean(dim=1)
这行代码的作用是将一个形状为`(N, 6)`的张量`bsize`重新调整形状为`(N, 3, 2)`,然后将数值类型转换为`float`类型,并对第二维进行求平均,最终得到一个形状为`(N, 2)`的张量`bs_mean`。
具体地,`-1`表示该维度的大小根据其他维度自动推导,因此此处表示将`bsize`的第一维度分为`N`份,每份大小为`3*2`。然后通过`.float()`函数将`bsize`的数据类型转换为`float`类型,因为后续需要进行数值计算。最后使用`.mean(dim=1)`函数对第二个维度进行求平均,得到形状为`(N, 2)`的张量`bs_mean`。
bs_mean = bsize.view(-1, 3, 2).float().mean(dim=1) RuntimeError: shape '[-1, 3, 2]' is invalid for input of size 16
The error message suggests that the input tensor `bsize` has a size of 16, which is not compatible with the requested shape of `[-1, 3, 2]`.
The shape `[-1, 3, 2]` means that the first dimension can be of any size (indicated by `-1`), the second dimension should have size 3, and the third dimension should have size 2. This shape is often used to represent batches of 3D points, where each point has two coordinates.
To fix the error, you need to make sure that `bsize` has a compatible size. One way to do this is to reshape the tensor to have a total size of 16:
```
bsize = torch.randn(16)
bs_mean = bsize.view(8, 2).float().mean(dim=1)
```
This reshapes the tensor to have a shape of `[8, 2]`, which is compatible with the requested shape of `[-1, 3, 2]` when the first dimension is set to 5.
Alternatively, you could adjust the shape of `bsize` to match the requested shape:
```
bsize = torch.randn(5, 3, 2)
bs_mean = bsize.float().mean(dim=1)
```
This computes the mean along the second dimension, which has size 3, resulting in a tensor of shape `[5, 2]`.
阅读全文